Canal-U

Mon compte

Institut Fourier

L’Institut Fourier, laboratoire de mathématiques de Grenoble, est une unité mixte de recherche CNRS/Université Grenoble Alpes. Ses activités portent principalement sur les mathématiques fondamentales développées autour de six grands thèmes de recherche : algèbre et géométries, combinatoire et didactique, géométrie et topologie, physique mathématique, probabilités, théorie des nombres. Ses recherches s’ouvrent aussi à d’autres disciplines, telles que la biologie, l’informatique et la physique. Depuis 2011, l’Institut Fourier filme ses évènements scientifiques tels que : colloques, séminaires, écoles d’été, conférences grand public, …

Pour vous abonner au flux RSS de Institut Fourier, cliquez sur l’icône de votre lecteur favori :

Liste des programmes

On présentera quelques résultats de théorie des ensembles récents, avec un accent sur l'hypothèse du continu et la possibilité de résoudre la question après les résultats négatifs bien connus de Gödel et Cohen, et sur les tables de Laver, qui sont des structures finies explicites, dont certaines propriétés combinatoires simples ...
Un test statistique  est un outil très puissant pour prendre des décisions, cependant ils sont parfois très mal interprétés. Après une petite introduction historique qui montrera que les débats autour de ces notions remontent à Fisher, je me focaliserai sur les tests multiples et j'introduirai les différents types d'erreur, celles ...
I will present a new explanation of the connection between the fractal uncertainty principle (FUP) of Bourgain-Dyatlov, a statement in harmonic analysis, and the existence of zero free strips for Selberg zeta functions, which is a statement in geometric scattering/dynamical systems. The connection is proved using (relatively) elementary methods via the ...
Jean-louis Koszul accompagné de Jacques Gasqu. Aux questions : Ariane Rolland (CNRS) et Romain Vanel (CNRS).A l'image : Fanny Bastien (CNRS).
La théorie quantique des champs est formulée d'habitude sur l'espace-temps plat de Minkowski. L'extension de ce cadre à des espaces-temps généraux permet de mettre en lumière de nouveaux phénomènes quantiques qui surviennent en présence d'un champ gravitationnel fort. Nous présenterons tout d'abord le cadre algébrique de la théorie des champs libres en ...
In this talk we study the optimal reinforcement of an elastic membrane, fixed at its boundary, by means of a connected one-dimensional structure. We show the existence of an optimal solution that may present multiplicities, that is regions where the optimal structure overlaps. Some numerical simulations are shown to confirm ...
Every closed differential form ω on a Euclidean ball has a primitive whose Lq norm is bounded by the Lp norm of ω (for suitable exponents p and q). We prove an analogous result for Rumin’s exterior differential on Heisenberg balls. This is used to prove vanishing of `q,p-cohomology of Heisenberg ...
The Besicovitch covering property originates from works of Besicovitch about differentiation of measures in Euclidean spaces. It can more generally be used as a usefull tool to deduce global properties of a metric space from local ones. We will discuss in this talk the validity or non validity of the ...
In this talk we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it to a smooth volume. First we give the Lebesgue decomposition of the Hausdorff volume. Then we focus on the regular part, show that it is not commensurable with a smooth volume and ...
Gigli and Mantegazza have observed how optimal transport and heat diffusion allow to describe the direction of the Ricci flow uniquely from the metric aspects of Riemannian manifolds. Their goal is to reformulate the Ricci flow so that it also makes sense for metric spaces. I will present investigations and ...
 
FMSH
 
Facebook Twitter Google+
Mon Compte