Mon compte

Résultats de recherche

Nombre de programmes trouvés : 29472

le (56m54s)

A. Song - On the essential minimal volume of Einstein 4-manifolds

Given a positive epsilon, a closed Einstein 4-manifold admits a natural thick-thin decomposition. I will explain how, for any delta, one can modify the Einstein metric to a bounded sectional curvature metric so that the thick part has volume linearly bounded by the Euler characteristic and the thin part has injectivity radius less than delta. I will also discuss relations to conjectural obstructions to collapsing with bounded sectional curvature or to the existence of Einstein metrics.
Voir la vidéo

le (1h1m56s)

F. Schulze - Mean curvature flow with generic initial data

Mean curvature flow is the gradient flow of the area functional and constitutes a natural geometric heat equation on the space of hypersurfaces in an ambient Riemannian manifold. It is believed, similar to Ricci Flow in the intrinsic setting, to have the potential to serve as a tool to approach several fundamental conjectures in geometry. The obstacle for these applications is that the flow develops singularities, which one in general might not be able to classify completely. Nevertheless, a well-known conjecture of Huisken states ...
Voir la vidéo

le (1h3m55s)

T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds

We study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result of a gluing-perturbation procedure that we develop. This sheds light on the structure of the moduli space of Einstein 4-manifolds near its boundary and lets us show that spherical and hyperbolic orbifolds (which are synthetic Einstein spaces) cannot be GH-approximated by smooth Einstein metrics. New obstructions specific to the compact situation moreover raise the ...
Voir la vidéo

le (1h13m19s)

R. Bamler - Compactness and partial regularity theory of Ricci flows in higher dimensions

We present a new compactness theory of Ricci flows. This theory states that any sequence of Ricci flows that is pointed in an appropriate sense, subsequentially converges to a synthetic flow. Under a natural non-collapsing condition, this limiting flow is smooth on the complement of a singular set of parabolic codimension at least 4. We furthermore obtain a stratification of the singular set with optimal dimensional bounds depending on the symmetries of the tangent flows. Our methods also imply the corresponding quantitative stratification result ...
Voir la vidéo

Facebook Twitter
Mon Compte