Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 7384
Cours magistraux

le (1h30m54s)

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 2)

A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no ...
Voir la vidéo
Cours magistraux

le (1h55m11s)

Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 3)

In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with for instance the singular Frobenius Theorem or the Liouvilian integration. I will also present some open questions which I will motivate by examples. Dans ce cours introductif je m’attacherai à présenter les notions de base tant locales que globales au travers d’exemples classiques. J’aborderai des énoncés liés à la résolution des singularités avec par ...
Voir la vidéo
Cours magistraux

le (1h33m59s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 3)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.  
Voir la vidéo
Cours magistraux

le (1h31m20s)

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 1)

A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no ...
Voir la vidéo
Cours magistraux

le (1h31m8s)

Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 2)

In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with for instance the singular Frobenius Theorem or the Liouvilian integration. I will also present some open questions which I will motivate by examples. Dans ce cours introductif je m’attacherai à présenter les notions de base tant locales que globales au travers d’exemples classiques. J’aborderai des énoncés liés à la résolution des singularités avec par ...
Voir la vidéo
Cours magistraux

le (2h2m34s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 2)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte