Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 7299
Conférences

le (1h40m51s)

Conférence de Paul CHEMETOV

En 2007, il crée l’agence AUA PAUL CHEMETOV qui réalise entre autres la médiathèque de Labège, le Vendespace de Vendée et de nombreux logements en région Parisienne et en province. L’agence travaille sur des restructurations urbaines à Montpellier le nouveau quartier Saint-Roch, à Amiens le projet Gare la Vallée, à Chambéry la traversée historique de la ville, à Ivry Confluences, et à Paris le secteur de la Porte de Vincennes et le schéma d'aménagement de l’hôpital Boucicaut.
Voir la vidéo
Cours magistraux

le (1h25m30s)

Alexandre Sukhov - J-complex curves: some applications (Part 3)

We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of ...
Voir la vidéo
Cours magistraux

le (1h18m12s)

Alexandre Sukhov - J-complex curves: some applications (Part 4)

We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of ...
Voir la vidéo
Cours magistraux

le (1h41m27s)

Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)

This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson theory. We will present the fundamental notions and some important results in the theory, explaining ideas of the proofs. In the second lecture we will present the theory of holomorphic fiber bundles on complex surfaces, the stability notion, moduli spaces and the Kobayashi-Hitschin correspondence that links moduli spaces of stable fiber bundles (defined ...
Voir la vidéo
Cours magistraux

le (1h32m24s)

Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)

This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson theory. We will present the fundamental notions and some important results in the theory, explaining ideas of the proofs. In the second lecture we will present the theory of holomorphic fiber bundles on complex surfaces, the stability notion, moduli spaces and the Kobayashi-Hitschin correspondence that links moduli spaces of stable fiber bundles (defined ...
Voir la vidéo
Cours magistraux

le (1h37m28s)

François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo
Cours magistraux

le (1h25m16s)

Alexandre Sukhov - J-complex curves: some applications (Part1)

We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of ...
Voir la vidéo
Cours magistraux

le (1h34m53s)

François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 2)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo
Cours magistraux

le (1h33m16s)

François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 3)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo
Cours magistraux

le (1h33m15s)

François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 4)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte