Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 29
Cours magistraux

le (1h32m17s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 1)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.
Voir la vidéo
Cours magistraux

le (2h2m34s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 2)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.
Voir la vidéo
Cours magistraux

le (1h33m59s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 3)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.  
Voir la vidéo
Cours magistraux

le (2h9m59s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 4)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.  
Voir la vidéo
Cours magistraux

le (1h18m12s)

Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 4)

The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the Floer homology, the Gromov-Witten invariants. In complex analysis and geometry, for instane polynomial hulls of totally real surfaces, envelopes of meromorphy, holomorphic foliations. We shall develop the theory of complex curves in almost complex manifolds and discuss some of these applications in our lectures.
Voir la vidéo
Cours magistraux

le (1h31m0s)

Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)

L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois pour démontrer des résultats classiques, comme la conjecture d’Arnold, et pour des résultats nouveaux. The use of methods from the Sheaf Theory (Kashiwara-Schapira) was developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara and Schapira. We will try to give an insight of that, in order to prove classical results, such as ...
Voir la vidéo
Cours magistraux

le (1h34m32s)

Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 3)

L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois pour démontrer des résultats classiques, comme la conjecture d’Arnold, et pour des résultats nouveaux. The use of methods from the Sheaf Theory (Kashiwara-Schapira) was developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara and Schapira. We will try to give an insight of that, in order to prove classical results, such as ...
Voir la vidéo
Cours magistraux

le (1h21m45s)

Serguei Ivachkovitch - Method of pseudoholomorphic curves and applications (Part 1)

The method of « pseudoholomorphic » curves proved itself to be extremely useful in different fields. In symplectic topology, for instance Gromov’s Nonsqueezing Theorem, Arnold’s conjecture and the Floer homology, the Gromov-Witten invariants. In complex analysis and geometry, for instane polynomial hulls of totally real surfaces, envelopes of meromorphy, holomorphic foliations. We shall develop the theory of complex curves in almost complex manifolds and discuss some of these applications in our lectures.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte