Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 29
Cours magistraux

le (1h25m16s)

Alexandre Sukhov - J-complex curves: some applications (Part1)

We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of ...
Voir la vidéo
Cours magistraux

le (1h25m30s)

Alexandre Sukhov - J-complex curves: some applications (Part 3)

We will focus in our lectures on the following : 1. J-complex discs in almost complex manifolds : general properties. Linearization and compactness. Gromov’s method : the Fredholm alternative for the d-bar operator. Attaching a complex disc to a Lagrangian manifold. Application : exotic symplectic structures. Hulls of totally real manifolds : Alexander’s theorem. 2. Real surfaces in (almost) complex surfaces. Filling real 2-spheres by a Levi-flat hypersurface (Bedford -Gaveau-Gromov theorem). Some applications. Symplectic and contact structures. Reeb foliation and the Weinsten conjecture. Hofer’s proof of ...
Voir la vidéo
Cours magistraux

le (1h30m54s)

Franc Forstnerič - Non singular holomorphic foliations on Stein manifolds (Part 2)

A nonsingular holomorphic foliation of codimension on a complex manifold is locally given by the level sets of a holomorphic submersion to the Euclidean space . If is a Stein manifold, there also exist plenty of global foliations of this form, so long as there are no topological obstructions. More precisely, if then any -tuple of pointwise linearly independent (1,0)-forms can be continuously deformed to a -tuple of differentials where is a holomorphic submersion of to . Such a submersion always exists if is no ...
Voir la vidéo
Cours magistraux

le (1h31m0s)

Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 1)

L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois pour démontrer des résultats classiques, comme la conjecture d’Arnold, et pour des résultats nouveaux. The use of methods from the Sheaf Theory (Kashiwara-Schapira) was developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara and Schapira. We will try to give an insight of that, in order to prove classical results, such as ...
Voir la vidéo
Cours magistraux

le (1h31m8s)

Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 2)

In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with for instance the singular Frobenius Theorem or the Liouvilian integration. I will also present some open questions which I will motivate by examples. Dans ce cours introductif je m’attacherai à présenter les notions de base tant locales que globales au travers d’exemples classiques. J’aborderai des énoncés liés à la résolution des singularités avec par ...
Voir la vidéo
Cours magistraux

le (1h31m29s)

Claude Viterbo - Théorie des faisceaux et Topologie symplectique (Part 2)

L’utilisation de méthodes de théorie des faisceaux (Kashiwara-Schapira)a été dévelopée ces dernières années par Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara et Schapira. Nous essaierons d’en donner un aperçu à la fois pour démontrer des résultats classiques, comme la conjecture d’Arnold, et pour des résultats nouveaux. The use of methods from the Sheaf Theory (Kashiwara-Schapira) was developped recently by Tamarkin, Nadler, Zaslow, Guillermou, Kashiwara and Schapira. We will try to give an insight of that, in order to prove classical results, such as ...
Voir la vidéo
Cours magistraux

le (1h32m17s)

Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 1)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.
Voir la vidéo
Cours magistraux

le (1h32m24s)

Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 2)

This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson theory. We will present the fundamental notions and some important results in the theory, explaining ideas of the proofs. In the second lecture we will present the theory of holomorphic fiber bundles on complex surfaces, the stability notion, moduli spaces and the Kobayashi-Hitschin correspondence that links moduli spaces of stable fiber bundles (defined ...
Voir la vidéo
Cours magistraux

le (1h33m15s)

François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 4)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo
Cours magistraux

le (1h33m16s)

François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 3)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte