Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 307
Label UNT Vidéocours

le (5m53s)

5.5. Quand les différences sont trompeuses

Il y a plusieurs raisons pour lesquelles la méthode UPGMA, que nous venons de voir, se révèle simpliste. L'une des raisons par exemple, c'est pourquoi quand on recalcule les distances, quand on a groupé deux espèces et construit un nouveau noeud, pourquoi recalcule-t-on les distances sur la base d'une moyenne ? Difficile à justifier d'un point de vue biologique, mais la méthode est simple. Mais peut-être que la critique la plus forte provient du fait que nous nous appuyons sur des distances qui sont calculées sur les séquences, et nous allons voir que ce calcul-là tend à sous-estimer le nombre ...
Voir la vidéo
Label UNT Vidéocours

le (4m10s)

4.4. L’alignement de séquences devient un problème d’optimisation

La distance de Hamming nous donne une première possibilité de mesurer la similarité entre 2 séquences. Mais elle ne reflète pas suffisamment la réalité biologique. Qu'est-ce que j'entends par là ? On a parlé de mutations et nous avons vu qu'il y avait 3 types de mutation : les substitutions et les insertions délétions. Insertion dans une séquence, délétion dans l'autre et vice versa. Il faut tenir compte de cette catégorie de mutation, c'est pourquoi il nous faut changer notre manière effectivement d'évaluer la différence et à l'inverse la similarité entre 2 séquences. Prenons cet exemple de 2 séquences ici ...
Voir la vidéo
Label UNT Vidéocours

le (6m18s)

4.8. Un algorithme récursif

Nous avons désormais en main tous les éléments pour écrire notre algorithme de détermination d'un alignement optimal, ici d'un chemin optimal.Avec les notations que nous avons introduites, je vous rappelle que nous savons, à priori, déterminer le coût de ce noeud-là, autrement dit le coût du chemin aboutissant sur ce noeud, en faisant l'hypothèse que nous connaissons les coûts optimaux de ces trois noeuds-là. Avant de poursuivre, il convient de comprendre que ce schéma de calcul, qu'on utilise pour calculer le coût de ce noeud-là, est aussi utilisable pour calculer le coût de ce noeud-là, à partir des coûts de ...
Voir la vidéo
Label UNT Vidéocours

le (3m12s)

5.2. L’arbre, objet abstrait

Vous l'aurez compris un arbre phylogénétique est un arbre abstrait qui n'a qu'un lointain rapport métaphorique avec un véritable arbre. L'arbre des bio-informaticiens et des informaticiens se dessinent du reste dans l'autre sens. C'est-à-dire que si on retrouve bien effectivement des branches qui connectent des noeuds, on a un noeud qui est la racine et qui est situé tout en haut et on situe en bas généralement par convention, les feuilles qu'on appelle également noeuds terminaux. Pour décrire un arbre, on peut utiliser une expression parenthésée, dont la logique s'impose assez rapidement. Voilà ici l'expression parenthésée correspondant à cette structure ...
Voir la vidéo
Label UNT Vidéocours

le (4m53s)

1.2. At the heart of the cell: the DNA macromolecule

During the last session, we saw how at the heart of the cell there's DNA in the nucleus, sometimes of cells, or directly in the cytoplasm of the bacteria. The DNA is what we call a macromolecule, that is a very long molecule. It's Avery, in 1944, who discovered that the DNA was the support of genetic information. But the scientists who are most well-known for DNA are Francis Crick and James Watson who discovered together, with Maurice Wilkins and Rosalind Franklin, in 1953, the structure of DNA, the famous double helix, the two strands. Here are Crick and Watson explaining on a very crude wire model far away ...
Voir la vidéo
Label UNT Vidéocours

le (5m49s)

1.4. What is an algorithm?

We have seen that a genomic textcan be indeed a very long sequence of characters. And to interpret this sequence of characters, we will need to use computers. Using computers means writing program. Writing program means designing first algorithm. So, let's see what an algorithm is. An algorithm is a series of operationsto be executed by a computer, but maybe also executed by ahuman, for solving a problem.  In the first algorithm we will study in this session and next one, the problem will be to count the number of different of the four different nucleotides which appeared in the sequence. It's a sequence of operations. You may say that in ...
Voir la vidéo
Label UNT Vidéocours

le (5m11s)

1.5. Counting nucleotides

In this session, don't panic. We will design our first algorithm. This algorithm is forcounting nucleotides. The idea here is that as an input,you have a sequence of nucleotides, of bases, of letters, of characters which ends with a star symbol, here. And, you want to count the number of A,C, G and T, and then the frequencies. To write an algorithm in thispseudo code language, you need first to declare on which objector variables you will work. Here, we declare severalinteger variables. What does it mean integer variables? That is a variable, the value of which can be an integer: 1, 2, 3, minus 9 and so on. So, integer ...
Voir la vidéo
Label UNT Vidéocours

le (4m29s)

1.6. GC and AT contents of DNA sequence

We have designed our first algorithmfor counting nucleotides. Remember, what we have writtenin pseudo code is first declaration of variables. We have several integer variables that are variables which cantake as a value an integer. One, two, three minus five and so on. We have the sequence of characters we want to interpret, declare as a character string oflengths and define. Then we have the initializationof our different variables. This symbol is a symbol for assignment, it means that zero becomes the value of total nb, nbT and soon and so on and here we say: index takes the value one. It means that we position at the beginning of ...
Voir la vidéo
Label UNT Vidéocours

le (6m7s)

1.7. DNA walk

We will now design a more graphical algorithm which is called "the DNA walk". We shall see what does it mean "DNA walk". Walk on to DNA. Something like that, yes. But first, just have a look again at the typical, also quite short sequence of DNA, a long text offour letters: A, C, G, T, T and so on. When the first sequence of DNA were obtained, the idea of using computers very quickly emerged but people didn't know exactly what to do with this sequence of characters. Again, there is a meaning behind the sequence because it is genetic information. It means it is the information ...
Voir la vidéo
Label UNT Vidéocours

le (6m25s)

1.8. Compressing the DNA walk

We have written the algorithm for the circle DNA walk. Just a precision here: the kind of drawing we get has nothing to do with the physical drawing of the DNA molecule. It is a symbolic representation. It is a way of representing the information content of the sequence as a drawing. Remember that the problem of the algorithm we designed is that it supposes the capacity of drawing several millions or billions of segments on the screen. This is not feasible. No screen will be large enough for that. So, how can we deal with this hardware constraint? Compression is the answer. Let's see that in more details. Remember, for each ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte