Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 307
Label UNT Vidéocours

le (4m0s)

4.3. Measuring sequence similarity

So we understand why gene orprotein sequences may be similar. It's because they evolve togetherwith the species and they evolve in time, there aremodifications in the sequence and that the sequence may still besimilar, similar enough again to retrieve information on onesequence to transfer it to another sequence of interest. So thequestion now is how can we measure this similarity between twosequences for the moment. The first approach to similarityis a very simple one is to apply a distance which is calledhere the Editing System or the Hamming Distance.The idea is very basic. You would take two sequences likethese two sequences here and you look at the differences and youcount ...
Voir la vidéo
Label UNT Vidéocours

le (4m3s)

5.3. Remplir un tableau de distances

Pour tenter de construire l'arbre phylogénétique d'un ensemble d'espèces, nous allons utiliser les données et génotypique ou des données génotypiques disponibles sur ces espèces. Plus clairement, nous allons utiliser des séquences d'un gène homologue de ces espèces. La première étape va consister à calculer une matrice ou tableau de ces distances. Matrice au tableau? Un point de vocabulaire qui mérite que l'on s'arrête quelques secondes pour l'expliciter. La notion de matrice, c'est une notion mathématique. La matrice est un objet mathématique ayant certaines propriétés; propriétés que l'on étudie et travaille dans le domaine de l'algèbre linéaire. La notion de tableaux ...
Voir la vidéo
Label UNT Vidéocours

le (4m10s)

4.4. L’alignement de séquences devient un problème d’optimisation

La distance de Hamming nous donne une première possibilité de mesurer la similarité entre 2 séquences. Mais elle ne reflète pas suffisamment la réalité biologique. Qu'est-ce que j'entends par là ? On a parlé de mutations et nous avons vu qu'il y avait 3 types de mutation : les substitutions et les insertions délétions. Insertion dans une séquence, délétion dans l'autre et vice versa. Il faut tenir compte de cette catégorie de mutation, c'est pourquoi il nous faut changer notre manière effectivement d'évaluer la différence et à l'inverse la similarité entre 2 séquences. Prenons cet exemple de 2 séquences ici ...
Voir la vidéo
Label UNT Vidéocours

le (4m12s)

4.6. A path is optimal if all its sub-paths are optimal

A sequence alignment between two sequences is a path in a grid. So that, an optimal sequence alignmentis an optimal path in the same grid. We'll see now that a property of this optimal path provides us with scanned lines for designing an optimization algorithm. The property is the following. A path which is optimal is made up of optimal sub-paths. To prove that, we can start byproving that if a path of length L is optimal then the path of length L minus one is also optimal. This can be proved quiteeasily ad arburdum. That is, you take the hypothesis that the path of length L is optimal ...
Voir la vidéo
Label UNT Vidéocours

le (4m23s)

4.4. Aligning sequences is an optimization problem

We have seen a nice and a quitesimple solution for measuring the similarity between two sequences. It relied on the so-called hammingdistance that is counting the number of differencesbetween two sequences. But the real situation is a bitmore complex as we'll see now, it needs an adequatesolution and algorithm. Why is it a bit more complex? Let's have a look at thispair of two sequences. If we apply the hamming distance,compute the hamming between these two sequences,we find ten differences. OK. But you must remember thatmutation may be substitution, deletion and insertion. So if wetake into account the deletion and insertion, the situation isvery different in the case of these two sequences. ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte