Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 3
Cours magistraux

le (1h4m55s)

G. Forni - Cohomological equation and Ruelle resonnences (Part 1)

In these lectures we summarized results on the cohomological equation for translation flows on translation surfaces (myself, Marmi, Moussa and Yoccoz, Marmi and Yoccoz) and apply these results to the asymptotic of correlations for pseudo-Anosov maps, which were recently obtained by a direct method by Faure, Gouezel and Lanneau. In this vein, we consider the generalization of this asymptotic to generic Teichmueller orbits (pseudo-Anosov maps correspond to periodic Teichmueller orbits) and to (partially hyperbolic) automorphisms of Heisenberg nilmanifolds (from results on the cohomological equation due to L. Flaminio and myself).eem
Voir la vidéo
Cours magistraux

le (1h1m29s)

G. Forni - Cohomological equation and Ruelle resonnences (Part 3)

In these lectures we summarized results on the cohomological equation for translation flows on translation surfaces (myself, Marmi, Moussa and Yoccoz, Marmi and Yoccoz) and apply these results to the asymptotic of correlations for pseudo-Anosov maps, which were recently obtained by a direct method by Faure, Gouezel and Lanneau.  In this vein, we consider the generalization of this asymptotic to generic Teichmueller orbits (pseudo-Anosov maps correspond to periodic Teichmueller orbits) and to (partially hyperbolic) automorphisms of Heisenberg nilmanifolds (from results on the cohomological equation due to L. Flaminio and myself).
Voir la vidéo
Cours magistraux

le (1h8m16s)

G. Forni - Cohomological equation and Ruelle resonnences (Part 2)

In these lectures we summarized results on the cohomological equation for translation flows on translation surfaces (myself, Marmi, Moussa and Yoccoz, Marmi and Yoccoz) and apply these results to the asymptotic of correlations for pseudo-Anosov maps, which were recently obtained by a direct method by Faure, Gouezel and Lanneau.  In this vein, we consider the generalization of this asymptotic to generic Teichmueller orbits (pseudo-Anosov maps correspond to periodic Teichmueller orbits) and to (partially hyperbolic) automorphisms of Heisenberg nilmanifolds (from results on the cohomological equation due to L. Flaminio and myself).
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte