Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 5577
Séminaires

le (2h25m3s)

Emile Zola. La Curée. Génétique, réception et traduction de La Curée

Émile Zola. La Curée. Empire et emprise de la chairPremière séance présidée par :- Aurélie BarjonetLes Interventions :- Michael Rosenfeld : Les ratures du manuscrit, témoins des hésitations charnelles de Zola - Hortense Delair : Le garçon de café Riche au service de l'effet : Les épreuves typographiques de La Curée- Myriam Kohnen : Le personnage secondaire, confident ou miroir de la femme objet : le cas de Baptiste et de Sidonie dans La Curée.- Elise Cantiran : La représentation de l'identité de genre dans in the Whirpool : conflits entre champ moral et littéraire.Le ...
Voir la vidéo
Séminaires

le (1h53m21s)

Emile Zola. La Curée. Politique de la chair dans La Curée

                     Émile Zola. La Curée. Empire et emprise de la chairSéance 3 Politique de chair dans La CuréeSéance présidée par Clive Thomson  Les intervenants  :- Shoshana Marzel : La violence comme élément constitutif de la masculinité dans La Curée - Mathieu Roger-Lacan : La Curée ou le Second Empire de la chair - Cyril Barde : L'or contre la chair. Le corps introuvable du spéculateur Le 5 novembre 1871, la rédaction du quotidien La Cloche interrompt la publication en feuilleton de La Curée, alors que le Parquet menace d’entamer des poursuites judiciaires en raison des nombreuses plaintes ...
Voir la vidéo
Cours magistraux

le (1h32m42s)

R. Bamler - Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications 3

I will present recent work with Kleiner in which we verify two topological conjectures using Ricci flow. First, we classify the homotopy type of every 3-dimensional spherical space form. This proves the Generalized Smale Conjecture and gives an alternative proof of the Smale Conjecture, which was originally due to Hatcher. Second, we show that the space of metrics with positive scalar curvature on every 3-manifold is either contractible or empty. This completes work initiated by Marques. At the heart of our proof is a new ...
Voir la vidéo
Cours magistraux

le (1h41m39s)

A. Mondino - Metric measure spaces satisfying Ricci curvature lower bounds 3

The idea of compactifying the space of Riemannian manifolds satisfying Ricci curvature lower bounds goes back to Gromov in the '80ies and was pushed by Cheeger-Colding in the ‘90ies, who investigated the structure of spaces arising as Gromov-Hausdorff limits of smooth Riemannian manifolds satisfying Ricci curvature lower bounds. A completely new approach based on Optimal Transport was proposed by Lott-Villani and Sturm around ten years ago; via this approach, one can give a precise sense of what means for a non-smooth space (more precisely ...
Voir la vidéo
Cours magistraux

le (1h26m58s)

A. Song - What is the (essential) minimal volume? 3

I will discuss the notion of minimal volume and some of its variants. The minimal volume of a manifold is defined as the infimum of the volume over all metrics with sectional curvature between -1 and 1. Such an invariant is closely related to "collapsing theory", a far reaching set of results developed by Cheeger, Gromov, Fukaya and others to describe bounded sectional curvature metrics. Most of my talks will be focused on presenting the main aspects of this theory: thick-thin decomposition, F-structures and ...
Voir la vidéo
Label UNT Conférences

le (1h5m6s)

Opinion polarization and network segregation. Modelling a complex Relationship

Recently, many societies seem to shift towards more polarization and volatility in opinions, for example in attitudes about immigration, climate policy, or the best policy response to Covid-19. A key obstacle for a scientific understanding of this development is that opinion dynamics in society involve a complex micro-macro interaction between processes of social influence occurring at the micro-level, meso-level conditions like network structures, and macro-level outcomes, like consensus, opinion-clustering or polarization. I will discuss how agent-based simulation models (ABM) can be used to further ...
Voir la vidéo
Conférences

le (1h5m6s)

Opinion polarization and network segregation. Modelling a complex Relationship

Recently, many societies seem to shift towards more polarization and volatility in opinions, for example in attitudes about immigration, climate policy, or the best policy response to Covid-19. A key obstacle for a scientific understanding of this development is that opinion dynamics in society involve a complex micro-macro interaction between processes of social influence occurring at the micro-level, meso-level conditions like network structures, and macro-level outcomes, like consensus, opinion-clustering or polarization. I will discuss how agent-based simulation models (ABM) can be used to further ...
Voir la vidéo
Cours magistraux

le (57m40s)

R. Bamler - Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications 4

I will present recent work with Kleiner in which we verify two topological conjectures using Ricci flow. First, we classify the homotopy type of every 3-dimensional spherical space form. This proves the Generalized Smale Conjecture and gives an alternative proof of the Smale Conjecture, which was originally due to Hatcher. Second, we show that the space of metrics with positive scalar curvature on every 3-manifold is either contractible or empty. This completes work initiated by Marques.At the heart of our proof is a new ...
Voir la vidéo
Cours magistraux

le (1h44m27s)

A. Mondino - Metric measure spaces satisfying Ricci curvature lower bounds 4

The idea of compactifying the space of Riemannian manifolds satisfying Ricci curvature lower bounds goes back to Gromov in the '80ies and was pushed by Cheeger-Colding in the ‘90ies, who investigated the structure of spaces arising as Gromov-Hausdorff limits of smooth Riemannian manifolds satisfying Ricci curvature lower bounds. A completely new approach based on Optimal Transport was proposed by Lott-Villani and Sturm around ten years ago; via this approach, one can give a precise sense of what means for a non-smooth space (more precisely ...
Voir la vidéo
Cours magistraux

le (1h25m35s)

A. Song - What is the (essential) minimal volume? 4

I will discuss the notion of minimal volume and some of its variants. The minimal volume of a manifold is defined as the infimum of the volume over all metrics with sectional curvature between -1 and 1. Such an invariant is closely related to "collapsing theory", a far reaching set of results developed by Cheeger, Gromov, Fukaya and others to describe bounded sectional curvature metrics. Most of my talks will be focused on presenting the main aspects of this theory: thick-thin decomposition, F-structures and ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte