Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 888
Cours magistraux

le (1h19m29s)

Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 4)

Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... ...
Voir la vidéo
Cours magistraux

le (1h18m46s)

Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 3)

In this course we give an introduction to the ergodic theory behind common number expansions, like expansions to integer and non-integer bases, Luroth series and continued fraction expansion. Starting with basic ideas in ergodic theory such as ergodicity, the ergodic theorem and natural extensions, we apply these to the familiar expansions mentioned above in order to understand the structure and global behaviour of different number theoretic expansions, and to obtain new and old results in an elegant and straightforward manner.
Voir la vidéo
Cours magistraux

le (1h11m53s)

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)

The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte