Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 888
Cours magistraux

le (1h15m48s)

Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 3)

Le but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur les liens avec la numération et les substitutions. Nous allons considérer principalement deux types de généralisations, à savoir, les algorithmes définis par homographies, comme l’algorithme de Jacobi-Perron, et les fractions continues associées aux algorithmes de réduction dans les réseaux.
Voir la vidéo
Cours magistraux

le (1h18m19s)

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 1)

The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question ...
Voir la vidéo
Cours magistraux

le (1h11m53s)

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 2)

The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question ...
Voir la vidéo
Cours magistraux

le (1h20m23s)

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 3)

The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question ...
Voir la vidéo
Conférences

le (1h2m16s)

H. Reis - Introduction to holomorphic foliations (Part 1)

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its relation with Frobenius Theorem. We will then introduce the singular analogues of these notions in the holomorphic setting and with some emphasis on the case of foliations of dimension 1 and foliations of codimension 1. These definitions will be illustrated with natural examples arising in the projective plane (space). Next, the fundamental notions ...
Voir la vidéo
Conférences

le (1h2m17s)

H. Reis - Introduction to holomorphic foliations (Part 2)

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its relation with Frobenius Theorem. We will then introduce the singular analogues of these notions in the holomorphic setting and with some emphasis on the case of foliations of dimension 1 and foliations of codimension 1. These definitions will be illustrated with natural examples arising in the projective plane (space). Next, the fundamental notions ...
Voir la vidéo
Conférences

le (1h38m51s)

H. Reis - Introduction to holomorphic foliations (Part 3)

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its relation with Frobenius Theorem. We will then introduce the singular analogues of these notions in the holomorphic setting and with some emphasis on the case of foliations of dimension 1 and foliations of codimension 1. These definitions will be illustrated with natural examples arising in the projective plane (space). Next, the fundamental notions ...
Voir la vidéo
Conférences

le (1h34m35s)

H. Reis - Introduction to holomorphic foliations (Part 4)

The purpose of this course is to present the basics of the general theory of (singular) holomorphic foliations. We will begin with the general definition of a (regular) foliation and its relation with Frobenius Theorem. We will then introduce the singular analogues of these notions in the holomorphic setting and with some emphasis on the case of foliations of dimension 1 and foliations of codimension 1. These definitions will be illustrated with natural examples arising in the projective plane (space). Next, the fundamental notions ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte