Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 886
Cours magistraux

le (46m14s)

G.Freixas i Montplet - Automorphic forms and arithmetic intersections (part 3)

In these lectures I will focus on the Riemann-Roch theorem in Arakelov geometry, in the specific context of some simple Shimura varieties. For suitable data, the cohomological part of the theorem affords an interpretation in terms of both holomorphic and non-holomorphic modular forms. The formula relates these to arithmetic intersection numbers, that can sometimes be evaluated through variants of the first Kroenecker limit formula. I will first explain these facts, and then show how the Jacquet-Langlands correspondence allows to relate arithmetic intersection numbers for ...
Voir la vidéo
Cours magistraux

le (1h29m51s)

E. Peyre - Slopes and distribution of points (part1)

The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite morphisms. The problem is to find a way to characterise these thin subsets. The slopes introduced by Jean-Benoît Bost are a useful tool for this problem. These lectures will present several cases in which this approach is fruitful. We shall also describe the notion of locally accumulating subvarieties which arise when one considers rational points of ...
Voir la vidéo
Cours magistraux

le (1h2m42s)

E. Peyre - Slopes and distribution of points (part2)

The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite morphisms. The problem is to find a way to characterise these thin subsets. The slopes introduced by Jean-Benoît Bost are a useful tool for this problem. These lectures will present several cases in which this approach is fruitful. We shall also describe the notion of locally accumulating subvarieties which arise when one considers rational points of ...
Voir la vidéo
Cours magistraux

le (55m57s)

E. Peyre - Slopes and distribution of points (part3)

The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite morphisms. The problem is to find a way to characterise these thin subsets. The slopes introduced by Jean-Benoît Bost are a useful tool for this problem. These lectures will present several cases in which this approach is fruitful. We shall also describe the notion of locally accumulating subvarieties which arise when one considers rational points of ...
Voir la vidéo
Cours magistraux

le (1h28m48s)

E. Peyre - Slopes and distribution of points (part4)

The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite morphisms. The problem is to find a way to characterise these thin subsets. The slopes introduced by Jean-Benoît Bost are a useful tool for this problem. These lectures will present several cases in which this approach is fruitful. We shall also describe the notion of locally accumulating subvarieties which arise when one considers rational points of ...
Voir la vidéo
Cours magistraux

le (1h14m49s)

Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 1)

Le but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur les liens avec la numération et les substitutions. Nous allons considérer principalement deux types de généralisations, à savoir, les algorithmes définis par homographies, comme l’algorithme de Jacobi-Perron, et les fractions continues associées aux algorithmes de réduction dans les réseaux.
Voir la vidéo
Cours magistraux

le (1h15m48s)

Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 3)

Le but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur les liens avec la numération et les substitutions. Nous allons considérer principalement deux types de généralisations, à savoir, les algorithmes définis par homographies, comme l’algorithme de Jacobi-Perron, et les fractions continues associées aux algorithmes de réduction dans les réseaux.
Voir la vidéo
Cours magistraux

le (1h18m19s)

Alexander Gorodnik - Diophantine approximation and flows on homogeneous spaces (Part 1)

The fundamental problem in the theory of Diophantine approximation is to understand how well points in the Euclidean space can be approximated by rational vectors with given bounds on denominators. It turns out that Diophantine properties of points can be encoded using flows on homogeneous spaces, and in this course we explain how to use techniques from the theory of dynamical systems to address some of questions in Diophantine approximation. In particular, we give a dynamical proof of Khinchin’s theorem and discuss Sprindzuk’s question ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte