Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 886
Conférences

le (58m51s)

I. Gentil - Le problème de Schrödinger, un point de vue analytique (Part 3)

Ce cours est divisé en trois parties, le but étant de comprendre le problème de Schrödinger avec un point de vue analytique. Le premier cours porte sur le problème de Schrödinger. C’est un problème de minimisation de l’entropie sur un ensemble de mesures de probabilités sur les trajectoires. Ce problème a été énoncé par Schrödinger lui même dans les années 30. Dans ce premier cours on verra les théorèmes fondamentaux sans forcément entrer dans les preuves techniques.Le deuxième cours porte sur le ...
Voir la vidéo
Conférences

le (52m29s)

J.-M. Martell - A minicourse on Harmonic measure and Rectifiability (Part 1)

Solving the Dirichlet boundary value problem for an elliptic operator amounts to study the good properties of the associated elliptic measure. In the context of domains having an Ahlfors regular boundary and satisfying theso-called interior corkscrew and Harnack chain conditions (these are respectively scale invariant/quantitative versions of openness and path-connectivity) we will show that for the class of Kenig-Pipher uniformly elliptic operators thesolvability of the Lp-Dirichlet problem with some finite p is equivalent to theuniform rectifiablity of the boundary. Joint work with S. Hofmann, S. Mayboroda, T. Toro, and Z. Zhao.
Voir la vidéo
Conférences

le (1h6m8s)

J.-M. Martell - A minicourse on Harmonic measure and Rectifiability (Part 2)

Solving the Dirichlet boundary value problem for an elliptic operator amounts to study the good properties of the associated elliptic measure. In the context of domains having an Ahlfors regular boundary and satisfying theso-called interior corkscrew and Harnack chain conditions (these are respectively scale invariant/quantitative versions of openness and path-connectivity) we will show that for the class of Kenig-Pipher uniformly elliptic operators thesolvability of the Lp-Dirichlet problem with some finite p is equivalent to theuniform rectifiablity of the boundary. Joint work with S. Hofmann, S. Mayboroda, T. Toro, and Z. Zhao.
Voir la vidéo
Conférences

le (50m25s)

J.-M. Martell - A minicourse on Harmonic measure and Rectifiability (Part 3)

Solving the Dirichlet boundary value problem for an elliptic operator amounts to study the good properties of the associated elliptic measure. In the context of domains having an Ahlfors regular boundary and satisfying theso-called interior corkscrew and Harnack chain conditions (these are respectively scale invariant/quantitative versions of openness and path-connectivity) we will show that for the class of Kenig-Pipher uniformly elliptic operators thesolvability of the Lp-Dirichlet problem with some finite p is equivalent to theuniform rectifiablity of the boundary. Joint work with S. Hofmann, S. Mayboroda, T. Toro, and Z. Zhao.
Voir la vidéo
Conférences

le (54m18s)

P. Gérard - L'équation de Benjamin-Ono et sa transformation de Fourier non linéaire

L'équation de Benjamin-Ono a été introduite par Brooke Benjamin à la fin des années 1960 pour modéliser certains régimes en mécanique des fluides. C'est une équation d'évolution dispersive qui possède une paire de Lax, faisant intervenir des opérateurs de Toeplitz à une variable. J'expliquerai comment, dans le cas de solutions périodiques en espace, il est possible de définir sur l'espace des phases une transformation de Fourier non linéaire permettant de ramener l'évolution à l'enroulement d'une droite sur un tore à vitesse constante, et je donnerai quelques applications. Il s'agit d'un travail en collaboration avec Thomas Kappeler (Zürich).
Voir la vidéo
Conférences

le (47m34s)

O. Shiffmann - Géométrie énumérative de fibrés vectoriels sur une courbe et théorie de Lie

Combien y a-t-il de fibrés vectoriels indécomposables de rang 6 et de degré 3 sur une courbe projective lisse de genre 23, définie sur un corps fini a 125 éléments ? Quels sont les nombres de Betti de l'espace de module des représentations (tordues) du groupe fondamental de cette même courbe dans le groupe $GL(6,\mathbb{C})$ ? Comment décrire l'anneau de cohomologie des espaces de modules de fibrés vectoriels semistables sur une courbe ? Nous verrons comment les réponses à ces questions sont reliées à la théorie de Lie.
Voir la vidéo
Séminaires

le (1h6m23s)

Emmanuel Trélat - Théorie du contrôle optimal et applications aux missions spatiales

La problématique du contrôle optimal est de guider l'évolution en temps d'un système donné vers une configuration finale souhaitée, tout en minimisant un certain critère. Le point saillant de cette théorie, qui généralise le calcul des variations, est le principe du maximum de Pontryagin, qui donne des conditions nécessaires d'optimalité du premier ordre. Du point de vue numérique ce principe réduit le problème initial à un problème aux deux bouts qui peut être résolu par une méthode de tir. En pratique il est très difficile ...
Voir la vidéo
Séminaires

le (59m36s)

Michel Ledoux - Isopérimétrie dans les espaces métriques mesurés

Le problème isopérimétrique (à volume donné, minimiser la mesure de bord, et déterminer les ensembles extrémaux), remonte aux temps les plus anciens. Tout à la fois, il peut se formuler de façon générale dans un espace métrique mesuré, et dans le même temps assez peu d’exemples explicites, en particuliers de minimiseurs, sont connus. Les questions se portent ainsi vers des propriétés de comparaison avec les des espaces modèles, comme ceux de la géométrie, euclidienne, sphérique et hyperbolique (pour lesquels les boules constituent les éléments extrémaux du problème isopérimétrique). ...
Voir la vidéo
Séminaires

le (1h5m4s)

Andras Vasy - The Feynman propagator and its positivity properties

One usually considers wave equations as evolution equations, i.e. imposes initial data and solves them. Equivalently, one can consider the forward and backward solution operators for the wave equation; these solve an equation Lu=f" style="position: relative;" tabindex="0" id="MathJax-Element-1-Frame">Lu=f, for say f" style="position: relative;" tabindex="0" id="MathJax-Element-2-Frame">f compactly supported, by demanding that u" style="position: relative;" tabindex="0" id="MathJax-Element-3-Frame">u is supported at points which are reachable by forward, respectively backward, time-like or light-like curves. This property corresponds to causality. But it has been known for a long time that in certain ...
Voir la vidéo
Cours magistraux

le (1h53m11s)

Joseph Fu - Integral geometric regularity (Part 1)

In the original form given by Blaschke in the 1930s, the famous Principal Kinematic Formula expresses the Euler characteristic of the intersection of two sufficiently regular objects in euclidean space, integrated over the space of all possible relative positions, in terms of geometric invariants associated to each of them individually. It is natural to wonder about the precise regularity needed  for this to work. The question turns on the existence of the normal cycle  of such an object A, i.e. an integral current that stands ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte