Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 764
Cours magistraux

le (1h26m57s)

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 3)

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and ...
Voir la vidéo
Cours magistraux

le (1h26m53s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 4)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h26m53s)

Feng Luo - An introduction to discrete conformal geometry of polyhedral surfaces (Part 2)

The goal of the course is to introduce some of the recent developments on discrete conformal geometry of polyhedral surfaces. We plan to cover the following topics.- The Andreev-Koebe-Thurston theorem on circle packing polyhedral metrics and Marden-Rodin’s proof- Thurston’s conjecture on the convergence of circle packings to the Riemann mapping and its solution by Rodin-Sullivan- Finite dimensional variational principles associated to polyhedral surfaces- A discrete conformal equivalence of polyhedral surfaces and its relationship to convex polyhedra in hyperbolic 3-space- A discrete uniformization theorem for compact polyhedral surfaces- Convergence of discrete conformality and some open problems
Voir la vidéo
Cours magistraux

le (1h26m53s)

J-B Bost - Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part2)

In the classical analogy between number fields and function fields, an Euclidean lattice (E,∥.∥) may be seen as the counterpart of a vector bundle V on a smooth projective curve C over some field k. Then the arithmetic counterpart of the dimension h0(C,V)=dimkΓ(C,V) of the space of sections of V is the non-negative real number h0θ(E,∥.∥):=log∑v∈Ee−π∥v∥2. In these lectures, I will firstly discuss diverse properties of the invariant h0θ and of its extensions to certain infinite dimensional generalizations of Euclidean lattices. Then I will present ...
Voir la vidéo
Cours magistraux

le (1h26m42s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 2)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Conférences

le (1h25m43s)

LA DÉTECTION DU RAYONNEMENT GRAVITATIONNEL 100 ANS APRÈS EINSTEIN

Les détecteurs d'ondes gravitationnelles de la collaboration LIGO/VIRGO ont observé les signaux gravitationnels de la coalescence de systèmes binaires de trous noirs stellaires massifs à des grandes distances en astronomie. Cette découverte majeure, 100 ans après la formulation de la relativité générale par Einstein, ouvre la voie à une nouvelle astronomie, celle des ondes gravitationnelles. Dans cet exposé, nous discuterons des résultats de LIGO/VIRGO et passerons en revue les sources d'ondes gravitationnelles les plus intéressantes pour les détecteurs au sol et dans l'espace, ainsi ...
Voir la vidéo
Cours magistraux

le (1h25m39s)

Robert Young - Quantitative geometry and filling problems (Part 2)

Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces related to the geometry of the ambient space? Our main examples will arise from geometric group theory, including nilpotent groups and symmetric spaces.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte