Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 747
Conférences

le (55m16s)

Robert Young - Quantitative rectifiability and differentiation in the Heisenberg group

(joint work with Assaf Naor) The Heisenberg group $\mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $\mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of differentiation that they used to show that it does not embed nicely into $L_1$. This notion is based on surfaces in $\mathbb{H}$, and in this talk, we will describe new techniques that let us quantify the "roughness" of such surfaces, find sharp bounds on the distortion of embeddings of $\mathbb{H}$, and estimate the accuracy of an approximate algorithm for the Sparsest Cut Problem.
Voir la vidéo
Conférences

le (51m50s)

Melanie Rupflin - Horizontal curves of metrics and applications to geometric flows

On closed surfaces there are three basic ways to evolve a metric, by conformal change, by pull-back with diffeomorphisms and by horizontal curves, moving orthogonally to the first two types of evolution. As we will discuss in this talk, horizontal curves are very well behaved even if the underlying conformal structures degenerate in moduli space as t to T. We can describe where the metrics will have essentially settled down to the limit by time t T as opposed to regions on which the metric still has to do an infinite amount of stretching. This quantified information is essential in ...
Voir la vidéo
Conférences

le (47m37s)

Jeff Viaclovsky - Deformation theory of scalar-flat Kahler ALE surfaces

I will discuss a Kuranishi-type theorem for deformations of complex structure on ALE Kahler surfaces, which will be used to prove that for any scalar-flat Kahler ALE surface, all small deformations of complex structure also admit scalar-flat Kahler ALE metrics. A local moduli space of scalar-flat Kahler ALE metrics can then be constructed, which is universal up to small diffeomorphisms. I will also discuss a formula for the dimension of the local moduli space in the case of a scalar-flat Kahler ALE surface which deforms to a minimal resolution of an isolated quotient singularity.  This is joint work with Jiyuan ...
Voir la vidéo
Conférences

le (1h4m1s)

Feng Luo - Discrete conformal geometry of polyhedral surfaces and its convergence

Our recent joint work with D. Gu established a discrete version of the uniformization theorem for compact polyhedral surfaces.   In this talk, we prove that discrete uniformizaton maps converge to conformal maps when the triangulations are sufficiently fine chosen.  We will also discuss the relationship between the discrete uniformization theorem and convex polyhedral surfaces  in the hyperbolic 3-space.  This is a joint work with J. Sun and T. Wu.
Voir la vidéo
Conférences

le (58m50s)

Stéphane Saboureau - Sweep-outs, width estimates and volume

Sweep-out techniques in geometry and topology have recently received a great deal of attention, leading to major breakthroughs. In this talk, we will present several width estimates relying on min-max arguments in relation to the volume of Riemannian manifolds. Dealing with the case of surfaces first, we will focus our attention on generalisations in higher dimension and present new estimates obtained in a work in progress.
Voir la vidéo
Conférences

le (1h3m4s)

Jean-Marc Schlenker - Anti-de Sitter geometry and polyhedra inscribed in quadrics

Anti-de Sitter geometry is a Lorentzian analog of hyperbolic geometry. In the last 25 years a number of connections have emerged between 3-dimensional anti-de Sitter geometry and the geometry of hyperbolic sufaces. We will explain how the study of ideal polyhedra in anti-de Sitter space leads to an answer to a question of Steiner (1832) on the combinatorics of polyhedra that can be inscribed in a quadric. Joint work with Jeff Danciger and Sara Maloni.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte