Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 800
Cours magistraux

le (1h25m27s)

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 5)

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and ...
Voir la vidéo
Cours magistraux

le (1h26m57s)

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 3)

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and ...
Voir la vidéo
Cours magistraux

le (1h23m9s)

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 4)

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and ...
Voir la vidéo
Cours magistraux

le (1h30m6s)

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 2)

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and ...
Voir la vidéo
Cours magistraux

le (1h55m24s)

Yoshihiro Tonegawa - Analysis on the mean curvature flow and the reaction-diffusion approximation (Part 1)

The course covers two separate but closely related topics. The first topic is the mean curvature flow in the framework of GMT due to Brakke. It is a flow of varifold moving by the generalized mean curvature. Starting from a quick review on the necessary tools and facts from GMT and the definition of the Brakke mean curvature flow, I will give an overview on the proof of the local regularity theorem. The second topic is the reaction-diffusion approximation of phase boundaries with key words such as the Modica-Mortola functional and ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte