Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 707
Conférences

le (1h4m1s)

Feng Luo - Discrete conformal geometry of polyhedral surfaces and its convergence

Our recent joint work with D. Gu established a discrete version of the uniformization theorem for compact polyhedral surfaces.   In this talk, we prove that discrete uniformizaton maps converge to conformal maps when the triangulations are sufficiently fine chosen.  We will also discuss the relationship between the discrete uniformization theorem and convex polyhedral surfaces  in the hyperbolic 3-space.  This is a joint work with J. Sun and T. Wu.
Voir la vidéo
Conférences

le (51m50s)

Melanie Rupflin - Horizontal curves of metrics and applications to geometric flows

On closed surfaces there are three basic ways to evolve a metric, by conformal change, by pull-back with diffeomorphisms and by horizontal curves, moving orthogonally to the first two types of evolution. As we will discuss in this talk, horizontal curves are very well behaved even if the underlying conformal structures degenerate in moduli space as t to T. We can describe where the metrics will have essentially settled down to the limit by time t T as opposed to regions on which the metric still has to do an infinite amount of stretching. This quantified information is essential in ...
Voir la vidéo
Conférences

le (47m37s)

Jeff Viaclovsky - Deformation theory of scalar-flat Kahler ALE surfaces

I will discuss a Kuranishi-type theorem for deformations of complex structure on ALE Kahler surfaces, which will be used to prove that for any scalar-flat Kahler ALE surface, all small deformations of complex structure also admit scalar-flat Kahler ALE metrics. A local moduli space of scalar-flat Kahler ALE metrics can then be constructed, which is universal up to small diffeomorphisms. I will also discuss a formula for the dimension of the local moduli space in the case of a scalar-flat Kahler ALE surface which deforms to a minimal resolution of an isolated quotient singularity.  This is joint work with Jiyuan ...
Voir la vidéo
Conférences

le (50m14s)

Sa'ar Hersonsky - Electrical Networks and Stephenson's Conjecture

The Riemann Mapping Theorem asserts that any simply connected planar domain which is not the whole of it, can be mapped by a conformal homeomorphism onto the open unit disk. After normalization, this map is unique and is called the Riemann mapping. In the 90's, Ken Stephenson, motivated by a circle packing approximation scheme suggested by Thurston (and first proved to converge by Rodin-Sullivan), predicted that the Riemann Mapping may be approximated by a different scheme, i.e., by a sequence of finite networks endowed with particular choices of conductance constants. These networks are naturally defined in terms of the contact ...
Voir la vidéo
Cours magistraux

le (1h27m31s)

Gilles Courtois - The Margulis lemma, old and new (Part 1)

The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal of these lectures is to present the recent work of  V. Kapovitch and B. Wilking who gave a sharp version of the Margulis lemma under the assumption that the Ricci curvature is bounded below. Their method ...
Voir la vidéo
Cours magistraux

le (1h25m5s)

Gilles Courtois - The Margulis lemma, old and new (Part 2)

The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal of these lectures is to present the recent work of  V. Kapovitch and B. Wilking who gave a sharp version of the Margulis lemma under the assumption that the Ricci curvature is bounded below. Their method ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte