Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 703
Cours magistraux

le (1h26m53s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 4)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h17m55s)

Sylvain Maillot - An introduction to open 3-manifolds (Part 3)

W. Thurston's geometrization program has lead to manyoutstanding results in 3-manifold theory. Thanks to worksof G. Perelman, J. Kahn and V. Markovic, D. Wise, and I. Agol among others, compact 3-manifolds can now beconsidered to be reasonably well-understood.By contrast, noncompact 3-manifolds remainmuch more mysterious. There is a series of examples,beginning with work of L. Antoine and J. H. C. Whitehead,which show that open 3-manifolds can exhibit wildbehavior at infinity. No comprehensive structure theoryanalogous to geometrization à la Thurston is currently availablefor these objectsIn these lectures, we will focus on two aspects of the subject:(1) constructing interesting examples, and(2) finding sufficientconditions ...
Voir la vidéo
Conférences

le (1h2m59s)

Decision making at scale: Algorithms, Mechanisms, and Platforms

YouTube competes with Hollywood as an entertainment channel, and also supplements Hollywood by acting as a distribution mechanism. Twitter has a similar relationship to news media, and Coursera to Universities. But there are no online alternatives for making democratic decisions at large scale as a society. In this talk, we will describe two algorithmic approaches towards large scale decision making that we are exploring. a) Knapsack voting and participatory budgeting: All budget problems are knapsack problems at their heart, since the goal is ...
Voir la vidéo
Cours magistraux

le (1h14m35s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 5)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h10m42s)

Sylvain Maillot - An introduction to open 3-manifolds (Part 4)

W. Thurston's geometrization program has lead to manyoutstanding results in 3-manifold theory. Thanks to worksof G. Perelman, J. Kahn and V. Markovic, D. Wise, and I. Agol among others, compact 3-manifolds can now beconsidered to be reasonably well-understood.By contrast, noncompact 3-manifolds remainmuch more mysterious. There is a series of examples,beginning with work of L. Antoine and J. H. C. Whitehead,which show that open 3-manifolds can exhibit wildbehavior at infinity. No comprehensive structure theoryanalogous to geometrization à la Thurston is currently availablefor these objectsIn these lectures, we will focus on two aspects of the subject:(1) constructing interesting examples, and(2) finding sufficientconditions ...
Voir la vidéo
Cours magistraux

le (1h27m31s)

Gilles Courtois - The Margulis lemma, old and new (Part 1)

The Margulis lemma describes the structure of the group generated by small loops in the fundamental group of a Riemannian manifold, thus giving a picture of its local topology. Originally stated for homogeneous spaces by C. Jordan, L. Bieberbach, H. J. Zassenhaus, D. Kazhdan-G. Margulis, it has been extended to the Riemannian setting by G. Margulis for manifolds of non positive curvature. The goal of these lectures is to present the recent work of  V. Kapovitch and B. Wilking who gave a sharp version of the Margulis lemma under the assumption that the Ricci curvature is bounded below. Their method ...
Voir la vidéo
Cours magistraux

le (1h31m39s)

Robert Young - Quantitative geometry and filling problems (Part 1)

Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces related to the geometry of the ambient space? Our main examples will arise from geometric group theory, including nilpotent groups and symmetric spaces.
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte