Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 762
Conférences

le (1h15m43s)

L'avenir du socialisme

Comment faire barrage au retour des nationalismes réactionnaires en Europe ? Inédite depuis la Seconde Guerre mondiale, leur poussée laisse les partis libéraux dans un état d’hébétude. Quant au socialisme, il connaît l’un des ébranlements les plus profonds de son histoire, lui qui, jusqu’à une date récente, fournissait son assise au camp des progressistes. Faut-il en conclure que les aspirations qui le portent ont disparu? INTERVENANTSBruno Karsenti, philosophe (EHESS/LIER),co-auteur de Socialisme et sociologie(Éditions de l’EHESS, 2017) Cyril Lemieux, sociologue (EHESS/LIER), ...
Voir la vidéo
Conférences

le (50m52s)

D. Brotbek - On the hyperbolicity of general hypersurfaces

A smooth projective variety over the complex numbers is said to be (Brody) hyperbolic if it doesn’t contain any entire curve. Kobayashi conjectured in the 70’s that general hypersurfaces of sufficiently large degree in PN are hyperbolic. This conjecture was only recently proved by Siu. The purpose of this talk is to present a new proof of this conjecture. The main idea of the proof, based on the theory of jet differential equations, is to establish that a stronger property, open in the Zariski topology, ...
Voir la vidéo
Conférences

le (52m41s)

F. Campana - Birational stability of the orbifold cotangent bundle

We show that a foliation on a projective complex manifold is algebraic with rationally connected (closure of) leaves exactly when its minimal slope with respect to some movable class is positive. This extends and strengthens former classical results by Y. Miyaoka and Bogomolov-McQuillan. Applications to foliations, hyperbolicity (a converse to a result of JP. Demailly) and moduli will be mentioned.This is a joint work with Mihai Paun, partly based on a former joint work with T.
Voir la vidéo
Conférences

le (1h3s)

T. Darvas - Complex Monge-Ampère equations with prescribed singularity type

Given a Kahler manifold (X, ω), finding smooth solutions to the equation (ø +i∂̄∂u)n=føn goes back to Yau’s solution of the Calabi conjecture in the seventies. In joint work with E. Di Nezza and C.H. Lu, we proposed to solve this same equation with the added constraint that u ∈ PSH(X, ω) has prescribed singularity type. As it turns out, this problem is well posed only ...
Voir la vidéo
Conférences

le (51m42s)

S. Donaldson - Boundary value problems for $G_2$ structures

In the lecture we consider the existence of G2 structures on 7-manifolds with boundary, with prescribed data on the boundary. In the first part we will review general background and theory, including Hitchin’s variational approach. We will then discuss in more detail reductions of the problem in the presence of symmetry and in ”adiabatic limits”, and connections with real and complex Monge-Ampère equations.
Voir la vidéo
Cours magistraux

le (1h31m5s)

J-B Bost - Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part1)

In the classical analogy between number fields and function fields, an Euclidean lattice (E,∥.∥) may be seen as the counterpart of a vector bundle V on a smooth projective curve C over some field k. Then the arithmetic counterpart of the dimension h0(C,V)=dimkΓ(C,V) of the space of sections of V is the non-negative real number h0θ(E,∥.∥):=log∑v∈Ee−π∥v∥2. In these lectures, I will firstly discuss diverse properties of the invariant h0θ and of its extensions to certain infinite dimensional generalizations of Euclidean lattices. Then I will present ...
Voir la vidéo
Cours magistraux

le (1h26m53s)

J-B Bost - Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part2)

In the classical analogy between number fields and function fields, an Euclidean lattice (E,∥.∥) may be seen as the counterpart of a vector bundle V on a smooth projective curve C over some field k. Then the arithmetic counterpart of the dimension h0(C,V)=dimkΓ(C,V) of the space of sections of V is the non-negative real number h0θ(E,∥.∥):=log∑v∈Ee−π∥v∥2. In these lectures, I will firstly discuss diverse properties of the invariant h0θ and of its extensions to certain infinite dimensional generalizations of Euclidean lattices. Then I will present ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte