Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 828
Label UNT Vidéocours

le (4m50s)

5.3. Building an array of distances

So using the sequences of homologous gene between several species, our aim is to reconstruct phylogenetic tree of the corresponding species. For this, we have to comparesequences and compute distances between these sequences and we have seen last week how we were able to measure the similarity between sequences and we can use this similarity as a measureof distance between sequences. So we will compare pairs of sequences, measure the similarity and store the value of distance, of similarity into what we could call a matrix or an array. Before going further, let's makemore explicit the use of these two terms, they are not equivalentbut some people mix them. The ...
Voir la vidéo
Label UNT Vidéocours

le (4m46s)

3.3. Searching for start and stop codons

We have written an algorithm for finding genes. But you remember that we arestill to write the two functions for finding the next stop codonand the next start codon. Let's see how we can do that. We are looking for triplets. We use the term triplets as long as wehave no proof that they are codons. You can have triplets outside genes. Within genes, they are called codons. In general, we arelooking for triplets. If you have a sequence like thisone and you are looking for occurrences of this triplet, whatyou have to do is: position your triplet at the beginning of the sequence. Compare the first letter. If it is not ...
Voir la vidéo
Label UNT Vidéocours

le (4m46s)

3.5. Making the predictions more reliable

We have got a bacterial gene predictor but the way this predictor works is rather crude and if we want to have more reliable results, we have to inject into this algorithmmore biological knowledge. We will use a notion of RBS, RBS stands for Ribosome Binding Sites. What is it? OK. Let's have a look atthe cell machinery or part of it here. You certainly see here that wedeal with a eukaryotes cell. Why? It's because you have anucleus and you remember that the difference between prokaryoticcell and eukaryotic cell lies n the existence of a nucleus. Within the nucleus you have the DNA. The DNA is transcribed into ...
Voir la vidéo
Label UNT Vidéocours

le (4m46s)

5.2. The tree, an abstract object

When we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree. Here is what we call an edge or a branch. We have nodes, a particular nodeis the root and other nodes are the leaves here terminal nodesand we see that when we draw a tree as an abstract object, we put the root upside and the leaves downside so it's the reverse of a classical natural tree. We need an expression to describe a tree and we will use this kind of expression, how ...
Voir la vidéo
Label UNT Vidéocours

le (4m30s)

4.2. Why gene/protein sequences may be similar?

Before measuring the similaritybetween the sequences, it's interesting to answer the question: why gene or protein sequences may be similar? It is indeed veryinteresting because the answer is related to the theory ofevolution which is due, as you all know, to Darwin. What Darwinsays is that species evolve in time and there is a creation ofnew species for existing ones. So there is an evolutionof species over time. He was a very thinking man, huh. This evolution can be also seenon the genomic sequences. Let's see this very small and partialtree of life and hypothetical tree of life. Here you have thespecies and you have this phenomenon of speciation giving ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte