Mon compte

Résultats de recherche

Nombre de programmes trouvés : 828

le (50m52s)

D. Brotbek - On the hyperbolicity of general hypersurfaces

A smooth projective variety over the complex numbers is said to be (Brody) hyperbolic if it doesn’t contain any entire curve. Kobayashi conjectured in the 70’s that general hypersurfaces of sufficiently large degree in PN are hyperbolic. This conjecture was only recently proved by Siu. The purpose of this talk is to present a new proof of this conjecture. The main idea of the proof, based on the theory of jet differential equations, is to establish that a stronger property, open in the Zariski topology, ...
Voir la vidéo

le (52m41s)

F. Campana - Birational stability of the orbifold cotangent bundle

We show that a foliation on a projective complex manifold is algebraic with rationally connected (closure of) leaves exactly when its minimal slope with respect to some movable class is positive. This extends and strengthens former classical results by Y. Miyaoka and Bogomolov-McQuillan. Applications to foliations, hyperbolicity (a converse to a result of JP. Demailly) and moduli will be mentioned.This is a joint work with Mihai Paun, partly based on a former joint work with T.
Voir la vidéo

le (51m42s)

S. Donaldson - Boundary value problems for $G_2$ structures

In the lecture we consider the existence of G2 structures on 7-manifolds with boundary, with prescribed data on the boundary. In the first part we will review general background and theory, including Hitchin’s variational approach. We will then discuss in more detail reductions of the problem in the presence of symmetry and in ”adiabatic limits”, and connections with real and complex Monge-Ampère equations.
Voir la vidéo

le (1h3s)

T. Darvas - Complex Monge-Ampère equations with prescribed singularity type

Given a Kahler manifold (X, ω), finding smooth solutions to the equation (ø +i∂̄∂u)n=føn goes back to Yau’s solution of the Calabi conjecture in the seventies. In joint work with E. Di Nezza and C.H. Lu, we proposed to solve this same equation with the added constraint that u ∈ PSH(X, ω) has prescribed singularity type. As it turns out, this problem is well posed only ...
Voir la vidéo

Facebook Twitter
Mon Compte