Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 2211
Label UNT Conférences

le (1h4m5s)

Les nombres et l'écriture

La relation entre les nombres et l'écriture a été durable et féconde. Au cours de l'histoire, dans différentes cultures - dans l'Europe moderne ou contemporaine, en Chine ancienne, dans le monde arabe médiéval - de nouvelles manières d'écrire les nombres ont conduit à de nouvelles manières de les penser, et même à la création d'extensions insoupçonnées jusqu'alors de la notion même de nombre. En d'autres sens, ces relations sont encore fertiles de nos jours. Mais nous savons désormais que ces interactions sont encore plus profondes et plus anciennes. Car l'écriture, dans son apparition la plus précoce, en Mésopotamie au quatrième ...
Voir la vidéo
Label UNT Conférences

le (1h15m41s)

Économie et mathématiques

L' usage de la modélisation mathématique en économie, et plus généralement dans les sciences sociales, choque encore un public pourtant habitué au succès de cette modélisation dans les sciences exactes et naturelles. Je me propose de reprendre la question à zéro, et de montrer que l'usage des modèles mathématiques est tout aussi légitime dans un cas que dans l'autre, qu'il est assis sur des bases expérimentales solides, et qu'il peut conduire à des progrès importants. En fait, les sciences sociales seront sans doute, avec la biologie, la grande source d'inspiration des mathématiques dans le siècle qui s'ouvre, comme les sciences ...
Voir la vidéo
Label UNT Conférences

le (1h17m50s)

Nécessité et pièges des définitions mathématiques

D'où viennent et à quoi servent les définitions mathématiques ? En quoi sont-elles nécessaires ? En quoi peuvent-elles être pernicieuses ? Sur des exemples liés à l'histoire, à l'enseignement, et au mouvement contemporain des mathématiques, je m'efforcerai de montrer les définitions comme aboutissements de processus, comme commencement de théories, comme merveilles et comme pièges.
Voir la vidéo
Label UNT Conférences

le (1h7m11s)

Mathématiques, modélisation et simulation

Que sont les simulations numériques et à quoi servent-elles ? Il s'agit de problèmes de mathématique appliquée dans lesquels on essaie de résoudre numériquement des modèles d'origine physique, biologique, économique, financier,...L'outil indispensable à ces résolutions sont les EDP (équations aux dérivées partielles), équations qui mélangent les différentes dérivées d'une fonction. Elles permettent de décrire des milieux non rigides, d'établir et de prévoir des " comportements moyens ". Les modélisations ainsi obtenues permettent d'analyser des problèmes aussi vastes que le traitement de l'image ou le comportement des fluides dans une cuve à électrolyse.
Voir la vidéo
Label UNT Conférences

le (1h7m24s)

Espace et nombre

"Le thème assigné à cette conférence par le plan d'ensemble du cycle est ""Géométrie et Algèbre"" : il s'agit, comme chacun sait, de deux grands domaines des mathématiques à la fois très anciens, et très actuels par les multiples découvertes qui les ont enrichis dans les dernières décennies. J'ai intitulé l'exposé ""Espaces et nombres"". Les espaces de toutes natures (et non l'Espace avec un grand 'E', entité plutôt philosophique) sont en effet les objets d'étude privilégiés des géomètres en même temps que les cadres où ""vivent"" les notions géométriques. De même, on peut dire, en simplifiant beaucoup, que l'algèbre s'occupe, ...
Voir la vidéo
Label UNT Conférences

le (1h4m0s)

Théorie des noeuds

Le but de cette conférence est de présenter l'évolution d'une discipline mathématique, la théorie des noeuds, depuis le milieu du XIXe siècle jusqu'à nos jours. À travers l'exemple de la théorie des noeuds, j'aimerais aussi faire découvrir au grand public certains aspects de la recherche en mathématiques. Les questions fondamentales sont souvent simples à formuler. Leur résolution se fait souvent attendre pendant de nombreuses années, et est le fruit du travail de plusieurs chercheurs, et de méthodes parfois inattendues. Les progrès viennent souvent d'idées d'autres disciplines mathématiques, parfois même d'autres sciences, notamment la physique.
Voir la vidéo
Label UNT Conférences

le (1h12m21s)

Les ondelettes et la révolution numérique

"La "" révolution numérique "" change profondément notre vie, puisqu'elle modifie notre relation au monde et notre relation aux autres. Elle comprend le téléphone digital, le fax et la télévision numérique (qui sont déjà en oeuvre) mais s'inscrit aussi dans le programme beaucoup plus ambitieux de la réalité virtuelle, monde dans lequel nous pourrons entrer, nous mouvoir, mais que nous pourrons aussi transformer et modifier à notre guise. L'interactivité est l'une des conséquences de la révolution numérique. La révolution numérique a également révolutionné l'imagerie médicale, le scanner, la RMN etc. puisque toutes ces images sont aujourd'hui élaborées a l'aide de ...
Voir la vidéo
Label UNT Conférences

le (1h14m12s)

Les fondements des mathématiques

"La "" crise des fondements "" s'ouvre en 1897 avec le paradoxe de Burali-Forti, une contradiction dans la toute jeune théorie des Ensembles. Parmi les solutions proposées, le "" Programme de Hilbert "" (~ 1925) accorde un rôle privilégié à la non-contradiction formelle. Le théorème d'incomplétude de Gödel (1931), qui réfute le programme de Hilbert, a fait le désespoir de tous ceux qui cherchaient une réponse définitive à leurs angoisses fondationnelles. Il a aussi gêné ceux qui cherchaient plus simplement à comprendre la nature des objets mathématiques. Ce n'est qu'avec le développement de l'informatique qu'ont pu se dégager de nouveaux ...
Voir la vidéo
Label UNT Conférences

le (1h7m25s)

Un exemple de résolution d'une énigme mathématique

"Mathématicien amateur, mais grand mathématicien s'il en fut, Fermat est à l'origine d'une énigme qui, pendant 350 ans, a retenu l'attention de ses pairs, amateurs et professionnels, au point d'entrer dans l'inconscient collectif de la communauté mathématique. Après un essai de caractérisation de l'essence de cette énigme extraordinaire, nous donnerons quelques détails sur les principales étapes d'une longue période de progrès continus, mais indécis, et sur le statut variable de cette énigme dans le temple des mathématiques. Puis nous expliquerons comment l'établissement d'un ""pont"" entre cette énigme et des conjectures venues de domaines mathématiques très éloignés a permis de la ...
Voir la vidéo
Label UNT Conférences

le (1h13m29s)

Connaissances et pensée mathématiques : les bases cérébrales de l'intuition numérique

Quelles représentations mentales et quelles structures cérébrales permettent au cerveau humain de créer des mathématiques ? Les nouvelles méthodes des sciences cognitives et de l'imagerie cérébrale permettent d'aborder cette question empiriquement, même si nous ne pouvons guère qu'effleurer le sujet en étudiant les plus simples des objets mathématiques : les petits nombres entiers. Je montrerai que la représentation des nombres dans le cerveau humain suit deux lois dont de nombreux mathématiciens, tels Poincaré, Hadamard ou Einstein, avaient pressenti l'existence en faisant appel à leur introspection. Tout d'abord, cette représentation est non-verbale : elle ne fait appel ni aux mots, ni ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte