Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 3318
Cours magistraux

le (1h1m29s)

G. Forni - Cohomological equation and Ruelle resonnences (Part 3)

In these lectures we summarized results on the cohomological equation for translation flows on translation surfaces (myself, Marmi, Moussa and Yoccoz, Marmi and Yoccoz) and apply these results to the asymptotic of correlations for pseudo-Anosov maps, which were recently obtained by a direct method by Faure, Gouezel and Lanneau.  In this vein, we consider the generalization of this asymptotic to generic Teichmueller orbits (pseudo-Anosov maps correspond to periodic Teichmueller orbits) and to (partially hyperbolic) automorphisms of Heisenberg nilmanifolds (from results on the cohomological equation due to L. Flaminio and myself).
Voir la vidéo
Conférences

le (1h1m29s)

S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (Part 3)

The aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations. A compact complex space is Kobayashi hyperbolic if and only if every holomorphic map from the complex plane to it is constant. Projective (or more generally compact Kähler) Kobayashi hyperbolic manifolds share many features with projective manifolds of general type, and it is nowadays a classical and important conjecture (due to S. Lang) that a ...
Voir la vidéo
Cours magistraux

le (1h1m22s)

A. Wright - Mirzakhani's work on Earthquakes (Part 3)

We will give the proof of Mirzakhani's theorem that the earthquake flow and Teichmuller unipotent flow are measurably isomorphic. We will assume some familiarity with quadratic differentials, but no familiarity with earthquakes, and the first lecture will be devoted to preliminaries. The second lecture will cover the proof, and the final lecture additional connections such as the link between Weil-Petersson and Masur-Veech volumes. If time allows, we will mention Mirzakhani's recent result on counting mapping class group orbits, which relies on her work on earthquake flow.
Voir la vidéo
Conférences

le (1h1m14s)

C. Gasbarri - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne I (Part 3)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques. Algébrisation des variétés analytiques projectives: les théorèmes de Siegel et de Chow. Autour du théorème de Lefschetz faible. Une introduction à la géométrie formelle. Le théorème d’algébrisation de Grothendieck.
Voir la vidéo
Conférences

le (1h1m14s)

F. Loray - Painlevé equations and isomonodromic deformations II (Part 1)

In these lectures, we use the material of V. Heu and H. Reis' lectures to introduce and study Painlevé equations from the isomonodromic point of view. The main objects are rank 2 systems of linear differential equations on the Riemann sphere, or more generally, rank 2 connections. We will mainly focus on the case  they have 4 simple poles, corresponding to the Painlevé VI equation, while other Painlevé equations correspond to confluence of these poles. First, we settle the Riemann-Hilbert correspondance which establish, ...
Voir la vidéo
Conférences

le (1h1m14s)

A. von Pippich - An analytic class number type formula for PSL2(Z)

For any Fuchsian subgroup Γ⊂PSL2(R) of the first kind, Selberg introduced the Selberg zeta function in analogy to the Riemann zeta function using the lengths of simple closed geodesics on Γ∖H instead of prime numbers. In this talk, we report on a formula that determines the special value at s=1 of the derivative of the Selberg zeta function for Γ=PSL2(Z). This formula is obtained as an application of a generalized Riemann-Roch isometry for the trivial sheaf on ¯¯¯¯¯¯¯¯¯¯¯Γ∖H, equipped with the Poincaré metric. This is joint ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte