Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 3517
Cours magistraux

le (1h32m37s)

R. Dujardin - Some problems of arithmetic origin in complex dynamics and geometry (part3)

Some themes inspired from number theory have been playing an important role in holomorphic and algebraic dynamics (iteration of rational mappings) in the past ten years. In these lectures I would like to present a few recent results in this direction. This should include: the dynamical Manin-Mumford problem, in particular in the case of product rational maps (P(x),Q(y)) (after Ghioca, Nguyen, and Ye) the “unlikely intersection” problem (after Baker and DeMarco, and also Favre and ...
Voir la vidéo
Cours magistraux

le (1h32m42s)

R. Bamler - Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications 3

I will present recent work with Kleiner in which we verify two topological conjectures using Ricci flow. First, we classify the homotopy type of every 3-dimensional spherical space form. This proves the Generalized Smale Conjecture and gives an alternative proof of the Smale Conjecture, which was originally due to Hatcher. Second, we show that the space of metrics with positive scalar curvature on every 3-manifold is either contractible or empty. This completes work initiated by Marques. At the heart of our proof is a new ...
Voir la vidéo
Séminaires

le (1h32m49s)

D. Essouabri : Fonctions zêtas des hauteurs Introduction à la Conjecture de Manin sur les points rationnels des variétés algébriques, Définition de la fonctions zêta des hauteurs et lien avec la Conjecture de Manin, Etude de quelques exemples.

Fonctions zêtas des hauteurs<br>Introduction à la Conjecture de Manin sur les points rationnels des variétés algébriques, Définition de lafonctions zêta des hauteurs et lien avec la Conjecture de Manin, Etude de quelques exemples.
Voir la vidéo
Cours magistraux

le (1h32m53s)

C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 2

We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with uniform lower bounds on their scalar curvature.   We close the course by presenting methods and theorems that may be applied to prove these open questions including older techniques developed with Lakzian, with Huang and Lee, and with Portegies.  I will also present key new results of Allen and Perales.   Students and postdocs interested in ...
Voir la vidéo
Cours magistraux

le (1h32m55s)

Yuan-Pin Lee - Introduction to Gromov-Witten theory and the crepant transformation conjecture (Part 3)

In these lectures, Gromov-Witten theory will be introduced, assuming only basic moduli theory covered in the rst week of the School. Then the Crepant Transformation Conjecture will be explained. Some examples, with emphasis on the projective/global cases, will be given. Note: The construction of virtual fundamental class, which forms the foundation of the GW theory, will be given in Jun Li's concurrent lectures and will not be explained here.
Voir la vidéo
Séminaires

le (1h32m59s)

J.-L. Verger-Gaugry : Conjectures limites de la théorie des nombres, Conjecture de Lehmer, Conjecture de Schinzel-Zassenhaus, et fonction zêta dynamique du beta-shift

Conjecture de Lehmer, Conjecture de Schinzel-ZassenhausMinoration de la mesure de Mahler, minoration de hauteurs, problèmes de Lehmer. Analogues etgénéralisations, problèmes limites.. Nombres de Perron, de Pisot, de Salem. Conjectures de Boyd surles nombres de Salem, Théorèmes de Boyd-Lawton et de Doche, mesures de Mahler de polynômes àplusieurs variables, interprétations cohomologiques de Deninger et Rodriguez-Villegas,
Voir la vidéo
Cours magistraux

le (1h33m12s)

F. Andreatta - The height of CM points on orthogonal Shimura varieties and Colmez conjecture (part4)

We will first introduce Shimura varieties of orthogonal type, their Heegner divisors and some special points, called CM (Complex Multiplication) points. Secondly we will review conjectures of Bruinier-Yang and Buinier-Kudla-Yang which provide explicit formulas for the arithmetic intersection of such divisors and the CM points. We will show that they imply an averaged version of a conjecture of Colmez. Finally we will present the main ingredients in the proof of the conjectures. The lectures are base on joint works with E. Goren, B. Howard ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte