Mon compte

Résultats de recherche

Nombre de programmes trouvés : 3561
Cours magistraux

le (1h31m39s)

Robert Young - Quantitative geometry and filling problems (Part 1)

Plateau's problem asks whether there exists a minimal surface with a given boundary in Euclidean space. In this course, we will study related problems in broader classes of spaces and ask what the asymptotics of filling problems tell us about the geometry of surfaces in groups and spaces. What do minimal and nearly minimal surfaces look like in different spaces, and how is the geometry of surfaces related to the geometry of the ambient space? Our main examples will arise from geometric group theory, including nilpotent groups and symmetric spaces.
Voir la vidéo
Cours magistraux

le (1h31m43s)

R. Bamler - Uniqueness of Weak Solutions to the Ricci Flow and Topological Applications 1

I will present recent work with Kleiner in which we verify two topological conjectures using Ricci flow. First, we classify the homotopy type of every 3-dimensional spherical space form. This proves the Generalized Smale Conjecture and gives an alternative proof of the Smale Conjecture, which was originally due to Hatcher. Second, we show that the space of metrics with positive scalar curvature on every 3-manifold is either contractible or empty. This completes work initiated by Marques. At the heart of our proof is a new ...
Voir la vidéo

le (1h31m48s)

FORUMS MOI ET MA SANTE A NANCY: "Le stress, cet ennemi qui vous veut du bien"

Titre : Forums moi et ma santé à Nancy: "Le stress, cet ennemi qui vous veut du bien"Intervenant : Didier Desor , professeur à l’Université de Lorraine en neurosciences du comportement.Résumé : Pas question de reprendre stressé, non… Cette année vous la voulez zen ! Mais c’est une chose de le dire, une autre d’y arriver. Alors comment faire ? Tout d’abord, vous poser quelques questions pour définit votre stress.Vous arrive-t-il souvent De négliger votre alimentation … Pas question de reprendre stressé, non… Cette année vous la voulez zen !  Mais ...
Voir la vidéo
Cours magistraux

le (1h31m50s)

C. Soulé - Arithmetic Intersection (Part1)

Let X be a 2-dimensional, normal, flat, proper scheme over the integers. Assume ¯L and ¯M are two hermitian line bundles over X. Arakelov (and Deligne) defined a real number ¯L.¯M, the arithmetic intersection number of ¯L and ¯M. We shall explain the definition and the basic properties of this number. Next, we shall see how to extend this construction to higher dimension, and how to interpret it in terms of arithmetic Chow groups.
Voir la vidéo
Cours magistraux

le (1h31m53s)

A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part3)

Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order. When X is defined over a number field, Bogomolov conjectured a refinement of this statement, namely that except for those finitely many points of finite order, the Néron-Tate heights of the algebraic points of X admit a strictly positive lower bound. This conjecture has been proved by Ullmo, and an extension to all subvarieties ...
Voir la vidéo

Facebook Twitter
Mon Compte