Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 16914
Cours magistraux

le (1h29m10s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 1)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h16m48s)

Sylvain Maillot - An introduction to open 3-manifolds (Part 1)

W. Thurston's geometrization program has lead to manyoutstanding results in 3-manifold theory. Thanks to worksof G. Perelman, J. Kahn and V. Markovic, D. Wise, and I. Agol among others, compact 3-manifolds can now beconsidered to be reasonably well-understood.By contrast, noncompact 3-manifolds remainmuch more mysterious. There is a series of examples,beginning with work of L. Antoine and J. H. C. Whitehead,which show that open 3-manifolds can exhibit wildbehavior at infinity. No comprehensive structure theoryanalogous to geometrization à la Thurston is currently availablefor these objectsIn these lectures, we will focus on two aspects of the subject:(1) constructing interesting examples, and(2) finding sufficientconditions ...
Voir la vidéo
Cours magistraux

le (1h26m42s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 2)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h21m8s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 3)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Conférences

le (53m13s)

L'origine du champ magnétique: de la Terre aux étoiles

Pour comprendre l’origine du champ magnétique de notre planète, la Terre, ou encore de notre étoile, le Soleil, il est nécessaire de s’intéresser aux propriétés des écoulements de fluides conducteurs et en particulier à l’instabilité Dynamo. Je présenterai l’état de l’art dans la modélisation et la compréhension de l’origine du champ magnétique de ces objets. Je discuterai leurs similarités, mais aussi ce qui les différencie. Il peut ainsi paraitre surprenant que le champ magnétique solaire s’inverse de manière quasi-périodique tous les 11 ans, alors que celui de la Terre s’inverse ...
Voir la vidéo
Cours magistraux

le (1h28m21s)

Sylvain Maillot - An introduction to open 3-manifolds (Part 2)

W. Thurston's geometrization program has lead to manyoutstanding results in 3-manifold theory. Thanks to worksof G. Perelman, J. Kahn and V. Markovic, D. Wise, and I. Agol among others, compact 3-manifolds can now beconsidered to be reasonably well-understood.By contrast, noncompact 3-manifolds remainmuch more mysterious. There is a series of examples,beginning with work of L. Antoine and J. H. C. Whitehead,which show that open 3-manifolds can exhibit wildbehavior at infinity. No comprehensive structure theoryanalogous to geometrization à la Thurston is currently availablefor these objectsIn these lectures, we will focus on two aspects of the subject:(1) constructing interesting examples, and(2) finding sufficientconditions ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte