Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 17849
Conférences

le (53m44s)

S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (Part 2)

The aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations. A compact complex space is Kobayashi hyperbolic if and only if every holomorphic map from the complex plane to it is constant. Projective (or more generally compact Kähler) Kobayashi hyperbolic manifolds share many features with projective manifolds of general type, and it is nowadays a classical and important conjecture (due to S. Lang) that a ...
Voir la vidéo
Conférences

le (1h17m44s)

F. Loray - Painlevé equations and isomonodromic deformations II (Part 4)

In these lectures, we use the material of V. Heu and H. Reis' lectures to introduce and study Painlevé equations from the isomonodromic point of view. The main objects are rank 2 systems of linear differential equations on the Riemann sphere, or more generally, rank 2 connections. We will mainly focus on the case  they have 4 simple poles, corresponding to the Painlevé VI equation, while other Painlevé equations correspond to confluence of these poles. First, we settle the Riemann-Hilbert correspondance which establish, ...
Voir la vidéo
Conférences

le (1h5m39s)

J.-B. Bost - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne II (Part 1)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques.  Algébrisation de sous-schémas formels de variétés projectives. Théorèmes de Lefschetz et géométrie formelle: les théorèmes de Grauert et de Grothendieck. Algébrisation en géométrie diophantienne. ...
Voir la vidéo
Conférences

le (1h4m35s)

S. Diverio - Kobayashi hyperbolicity of complex projective manifolds and foliations (part 1)

The aim of this mini course is to highlight some links between the study of the Kobayashi hyperbolicity properties of complex projective manifolds and holomorphic foliations. A compact complex space is Kobayashi hyperbolic if and only if every holomorphic map from the complex plane to it is constant. Projective (or more generally compact Kähler) Kobayashi hyperbolic manifolds share many features with projective manifolds of general type, and it is nowadays a classical and important conjecture (due to S. Lang) that a ...
Voir la vidéo
Conférences

le (1h31m30s)

F. Loray - Painlevé equations and isomonodromic deformations II (Part 3)

In these lectures, we use the material of V. Heu and H. Reis' lectures to introduce and study Painlevé equations from the isomonodromic point of view. The main objects are rank 2 systems of linear differential equations on the Riemann sphere, or more generally, rank 2 connections. We will mainly focus on the case they have 4 simple poles, corresponding to the Painlevé VI equation, while other Painlevé equations correspond to confluence of these poles. First, we settle the Riemann-Hilbert correspondance which establish, roughly speaking, a one-to-one correspondance between connections and their monodromy data, once the ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte