le (42m3s)

# Résultats de recherche

**17486**

le (49m53s)

## Zdeborová - Loss landscape and behaviour of algorithms in the spiked matrix-tensor model

A key question of current interest is: How are properties of optimization and sampling algorithms influenced by the properties of the loss function in noisy high-dimensional non-convex settings? Answering this question for deep neural networks is a landmark goal of many ongoing works. In this talk I will answer this question in unprecedented detail for the spiked matrix-tensor model. Information theoretic limits, and Kac-Rice analysis of the loss landscapes, will be compared to the analytically studied performance of message passing algorithms, of the Langevin dynamics and of the gradient flow. Several rather non-intuitive results will be unveiled and explained. Voir la vidéole (58m34s)

## Tropp 1/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (59m6s)

## Tropp 2/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (57m49s)

## Tropp 3/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (1h21s)

## Tropp 4/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (1h1m44s)

## Tropp 5/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (56m12s)

## Tropp 6/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (0s)

## Tropp 7/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ... Voir la vidéole (1h24m41s)