Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 17486
Conférences

le (42m3s)

Verzelen - Clustering with the relaxed K-means

This talk is devoted to clustering problems. It amounts to partitionning a set of given points or the nodes of a given graph, in such a way that the groups are as homogeneous as possible. After introducing two random instances of this problem, namely sub-Gaussian Mixture Model (sGMM) and Stochastic Block Model (SBM), I will explain how convex relaxations of the classical $K$-means criterion achieve near optimal performances. Emphasis will be put on the connections between the clustering bounds and relevant results in random matrix theory.
Voir la vidéo
Conférences

le (49m53s)

Zdeborová - Loss landscape and behaviour of algorithms in the spiked matrix-tensor model

A key question of current interest is: How are properties of optimization and sampling algorithms influenced by the properties of the loss function in noisy high-dimensional non-convex settings? Answering this question for deep neural networks is a landmark goal of many ongoing works. In this talk I will answer this question in unprecedented detail for the spiked matrix-tensor model. Information theoretic limits, and Kac-Rice analysis of the loss landscapes, will be compared to the analytically studied performance of message passing algorithms, of the Langevin dynamics and of the gradient flow. Several rather non-intuitive results will be unveiled and explained.
Voir la vidéo
Cours magistraux

le (58m34s)

Tropp 1/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (59m6s)

Tropp 2/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (57m49s)

Tropp 3/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (1h21s)

Tropp 4/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (1h1m44s)

Tropp 5/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (56m12s)

Tropp 6/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (0s)

Tropp 7/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo
Cours magistraux

le (1h24m41s)

Tropp 8/9 - Random matrix theory and computational linear algebra

This course treats some contemporary algorithms from computational linear algebra that involve random matrices. Rather than surveying the entire field, we focus on a few algorithms that are both simple and practically useful. We begin with an introduction to matrix concentration inequalities, which are a powerful tool for analyzing structured random matrices. We use these ideas to study matrix approximations constructed via randomized sampling, such as the random features method. As a more sophisticated application, we present a complete treatment of a recent algorithm for solving graph Laplacian linear systems in near-linear time. Some references : 1. Tropp, "An introduction to ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte