Mon compte

# Résultats de recherche

Trier par :
Nombre de programmes trouvés : 149
Cours magistraux

le (2h9m59s)

## Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 4)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.
Voir la vidéo
Cours magistraux

le (2h2m34s)

## Jean-Pierre Demailly - Kobayashi pseudo-metrics, entire curves and hyperbolicity of algebraic varieties (Part 2)

We will first introduce the basic concepts pertaining to Kobayashi pseudo-distances and hyperbolic complex spaces, including Brody’s theorem and the Ahlfors-Schwarz lemma. One of the main goals of the theory is to understand conditions under which a given algebraic variety is Kobayashi hyperbolic. This leads to the introduction of jet spaces and jet metrics, and provides a strong link between the existence of entire curves and the existence of global algebraic differential equations.
Voir la vidéo
Cours magistraux

le (1h55m11s)

## Dominique Cerveau - Holomorphic foliations of codimension one, elementary theory (Part 3)

In this introductory course I will present the basic notions, both local and global, using classical examples. I will explain statements in connection with the resolution of singularities with for instance the singular Frobenius Theorem or the Liouvilian integration. I will also present some open questions which I will motivate by examples. Dans ce cours introductif je m’attacherai à présenter les notions de base tant locales que globales au travers d’exemples classiques. J’aborderai des énoncés liés à la résolution des singularités avec par ...
Voir la vidéo
Cours magistraux

le (1h41m27s)

## Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 1)

This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson theory. We will present the fundamental notions and some important results in the theory, explaining ideas of the proofs. In the second lecture we will present the theory of holomorphic fiber bundles on complex surfaces, the stability notion, moduli spaces and the Kobayashi-Hitschin correspondence that links moduli spaces of stable fiber bundles (defined ...
Voir la vidéo
Cours magistraux

le (1h37m52s)

## Andrei Teleman - Instantons and holomorphic curves on surfaces of class VII (Part 3)

This series of lectures is dedicated to recent results concerning the existence of holomorphic curves on the surfaces of class VII. The first lecture will be an introduction to the Donaldson theory. We will present the fundamental notions and some important results in the theory, explaining ideas of the proofs. In the second lecture we will present the theory of holomorphic fiber bundles on complex surfaces, the stability notion, moduli spaces and the Kobayashi-Hitschin correspondence that links moduli spaces of stable fiber bundles (defined ...
Voir la vidéo
Cours magistraux

le (1h37m28s)

## François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 1)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo
Cours magistraux

le (1h37m8s)

## Yuan-Pin Lee - Introduction to Gromov-Witten theory and the crepant transformation conjecture (Part 2)

In these lectures, Gromov{Witten theory will be introduced, assuming only basic moduli theory covered in the rst week of the School. Then the Crepant Transformation Conjecture will be explained. Some examples, with emphasis on the projective/global cases, will be given. Note: The construction of virtual fundamental class, which forms the foundation of the GW theory, will be given in Jun Li's concurrent lectures and will not be explained here.
Voir la vidéo
Cours magistraux

le (1h34m53s)

## François Lalonde - Applications of Quantum homology to Symplectic Topology (Part 2)

The first two lectures will present the fundamental results of symplectic topology : basic definitions, Moser’s lemma, normal forms of the symplectic structure near symplectic and Lagrangian submanifolds, characterization of Hamiltonian fibrations over any CW-complex. The third course will give the application of quantum homology to the splitting of the rational cohomology ring of any Hamiltonian fibration over S2, a generalization of a result of Deligne in the algebraic case and of Kirwan in the toric case. The fourth course will give the ...
Voir la vidéo