Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 8303
Label UNT Conférences

le (1h7m24s)

Espace et nombre

"Le thème assigné à cette conférence par le plan d'ensemble du cycle est ""Géométrie et Algèbre"" : il s'agit, comme chacun sait, de deux grands domaines des mathématiques à la fois très anciens, et très actuels par les multiples découvertes qui les ont enrichis dans les dernières décennies. J'ai intitulé l'exposé ""Espaces et nombres"". Les espaces de toutes natures (et non l'Espace avec un grand 'E', entité plutôt philosophique) sont en effet les objets d'étude privilégiés des géomètres en même temps que les cadres où ""vivent"" les notions géométriques. De même, on peut dire, en simplifiant beaucoup, que l'algèbre s'occupe, ...
Voir la vidéo
Label UNT Conférences

le (1h7m11s)

Mathématiques, modélisation et simulation

Que sont les simulations numériques et à quoi servent-elles ? Il s'agit de problèmes de mathématique appliquée dans lesquels on essaie de résoudre numériquement des modèles d'origine physique, biologique, économique, financier,...L'outil indispensable à ces résolutions sont les EDP (équations aux dérivées partielles), équations qui mélangent les différentes dérivées d'une fonction. Elles permettent de décrire des milieux non rigides, d'établir et de prévoir des " comportements moyens ". Les modélisations ainsi obtenues permettent d'analyser des problèmes aussi vastes que le traitement de l'image ou le comportement des fluides dans une cuve à électrolyse.
Voir la vidéo
Label UNT Conférences

le (1h17m50s)

Nécessité et pièges des définitions mathématiques

D'où viennent et à quoi servent les définitions mathématiques ? En quoi sont-elles nécessaires ? En quoi peuvent-elles être pernicieuses ? Sur des exemples liés à l'histoire, à l'enseignement, et au mouvement contemporain des mathématiques, je m'efforcerai de montrer les définitions comme aboutissements de processus, comme commencement de théories, comme merveilles et comme pièges.
Voir la vidéo
Label UNT Conférences

le (1h15m41s)

Économie et mathématiques

L' usage de la modélisation mathématique en économie, et plus généralement dans les sciences sociales, choque encore un public pourtant habitué au succès de cette modélisation dans les sciences exactes et naturelles. Je me propose de reprendre la question à zéro, et de montrer que l'usage des modèles mathématiques est tout aussi légitime dans un cas que dans l'autre, qu'il est assis sur des bases expérimentales solides, et qu'il peut conduire à des progrès importants. En fait, les sciences sociales seront sans doute, avec la biologie, la grande source d'inspiration des mathématiques dans le siècle qui s'ouvre, comme les sciences ...
Voir la vidéo
Label UNT Conférences

le (1h4m5s)

Les nombres et l'écriture

La relation entre les nombres et l'écriture a été durable et féconde. Au cours de l'histoire, dans différentes cultures - dans l'Europe moderne ou contemporaine, en Chine ancienne, dans le monde arabe médiéval - de nouvelles manières d'écrire les nombres ont conduit à de nouvelles manières de les penser, et même à la création d'extensions insoupçonnées jusqu'alors de la notion même de nombre. En d'autres sens, ces relations sont encore fertiles de nos jours. Mais nous savons désormais que ces interactions sont encore plus profondes et plus anciennes. Car l'écriture, dans son apparition la plus précoce, en Mésopotamie au quatrième ...
Voir la vidéo
Label UNT Conférences

le (55m20s)

La turbulence

Cinq siècles après les travaux de Léonard de Vinci sur le contrôle des tourbillons et de leur effet dans la rivière Arno, le sujet n'est toujours pas clos. Au XXème siècle ce sont d'abord les innombrables applications pratiques (par exemple dans le domaine de l'aéronautique) qui ont été le moteur d'un progrès qui se concrétisait plutôt par le développement de modèles empiriques que par de véritables percées fondamentales. A partir de 1940, grâce en particulier au mathématicien russe Andrei Nikolaevich Kolmogorov, une véritable théorie a été proposée. Elle s'est révélée à la fois féconde en applications (en modélisation pour l'ingénieur) ...
Voir la vidéo
Label UNT Conférences

le (1h20m1s)

Les probabilités et le mouvement brownien

"Le hasard est soumis à des lois, que le calcul des probabilités étudie d'un point de vue mathématique. La nature de ces lois est asymptotique, on ne peut rien déduire de la réalisation d'un événement aléatoire, seules les séries d'évènements ont une signification statistique, d'autant plus fiable que leur nombre est grand. Modéliser le hasard pour pouvoir faire des prévisions est un enjeu primordial. Dans de nombreuses situations il faut comprendre comment une source de "" bruit "" vient influencer le phénomène que l'on observe au cours du temps. Ce phénomène peut être un signal que l'on cherche à décrypter, ...
Voir la vidéo
Label UNT Conférences

le (1h19m19s)

Espaces courbes

La notion d'espace (intrinsèquement) courbe a mis beaucoup de temps avant de s'imposer. Pour la définir il convient de dépasser le premier modèle de géométrie systématiquement développée qu'est la géométrie d'Euclide. De ce point de vue, l'émergence au début du XIXe siècle des géométries non-euclidiennes a joué un rôle déterminant, qui a été encore amplifié par l'oeuvre révolutionnaire de Bernhard Riemann en 1854. Ce contexte mathématiquement riche sera complété par la reconnaissance par Albert Einstein qu'il pouvait servir de cadre à sa théorie de la Relativité Générale, qui identifie les effets gravitationnels à la courbure de l'espace. Le sujet n'a ...
Voir la vidéo
Label UNT Conférences

le (1h21m5s)

Mathématiques du monde quantique

Mon intention est d'expliquer d'abord comment la notion d'espace géométrique a évolué à travers la géométrie non-euclidienne, la géométrie riemannienne qui est la pierre angulaire de la relativité générale d'Einstein. J'aborderai ensuite l'intervention du monde quantique et le profond changement qu'il occasionne dans les notions géométriques. Je dirai également quelques mots de la renormalisation. Concernant mon exposé, mon intention est d'expliquer d'abord comment la notion d'espace géométrique a évolué a travers la géométrie non-euclidienne, et la géométrie riemannienne qui est la pierre angulaire de la relativité générale d'Einstein.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte