Label UNT Vidéocours le 01/06/2015 (7m22s) 3.6. Observability in robotics In this video we discuss a fundamental issue which arises when we deal with an estimation problem: understanding if the system contains enough information to perform the estimation of the state. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (6m57s) 3.7. Observability Rank Criterion In this video, we discuss an automatic method which is analytical and allows us to answer the question if a state is observable or not: this method is the Observability Rank Criterion which has been introduced by Herman Krener in 1977. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (7m42s) 4.2. Dynamic Probabilistic Grids – Bayesian Occupancy Filter concept This video will show how to describe Bayesian occupancy filter concept. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (6m14s) 4.3. Dynamic Probabilistic Grids – Implementation approaches This video addresses the problem of the practical implementation for the dynamic probabilistic grid. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (7m40s) 4.1. Robot Perception for Dynamic environments: Outline & DP-Grids concept The fourth part of the course addresses perception, situation awareness and decision making. In this first video, we're giving an outline of the problem and introducing the new concept of dynamic probability grids. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (6m13s) 4.4. Object level Perception functions (SLAM + DATMO) This video is dedicated to the object level perception functions: Simultaneous Localization Mapping (SLAM) and Detection and Tracking surrounding Mobile Objects (DATMO). Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (6m47s) 4.5. Detection and Tracking of Mobile Objects – Problem & Approaches This video adresses the Detection and Tracking of Mobile Objects (DATMO) problem. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (6m16s) 4.6. Detection and Tracking of Mobile Objects – Model & Grid based approaches This video addresses the question of model-based and grid-based approaches. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (6m37s) 4.7. Embedded Bayesian Perception & Short-term collision risk (DP-Grid level) This video deals with embedded Bayesian perception and short-term collision risk. Voir la vidéo
Label UNT Vidéocours le 01/06/2015 (9m45s) 4.9. Situation Awareness – Collision Risk Assessment & Decision (Object level) This video addresses the problem of collision risk assessment and decision. Voir la vidéo