Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 10127
Label UNT Conférences

le (1h21m5s)

Mathématiques du monde quantique

Mon intention est d'expliquer d'abord comment la notion d'espace géométrique a évolué à travers la géométrie non-euclidienne, la géométrie riemannienne qui est la pierre angulaire de la relativité générale d'Einstein. J'aborderai ensuite l'intervention du monde quantique et le profond changement qu'il occasionne dans les notions géométriques. Je dirai également quelques mots de la renormalisation. Concernant mon exposé, mon intention est d'expliquer d'abord comment la notion d'espace géométrique a évolué a travers la géométrie non-euclidienne, et la géométrie riemannienne qui est la pierre angulaire de la relativité générale d'Einstein.
Voir la vidéo
Conférences

le (55m59s)

V. Tosatti - $C^{1,1}$ estimates for complex Monge-Ampère equations

I will discuss a method that we recently introduced in collaboration with Chu and Weinkove which gives interior C1,1 estimates for the non-degenerate complex Monge-Ampère equation on compact Kähler manifolds (possibly with boundary). The method is sufficiently robust to also give C1,1 regularity of geodesic segments in the space of Kähler metrics (thus resolving a long-standing problem originating from the work of Chen), of quasi-psh envelopes in Kähler as well as nef and big classes (solving a conjecture of Berman), and of geodesic rays that arise ...
Voir la vidéo
Conférences

le (53m22s)

C. Voisin - Cubic fourfolds, hyper-Kähler manifolds and their degenerations

There at least three families of hyper-K ̈ahler manifolds built from cubic fourfolds, the most recently discovered one being the compactified intermediate Jacobian fibrations I constructed with Laza and Sacca. In a joint work with Koll ́ar, Laza and Sacca, we provide an easy way to compute their deformation types, by proving that if the central fiber of a degeneration of hyper-Kähler manifolds has one component which is not uniruled, then after base-change the family becomes fiberwise birational to a family of smooth ...
Voir la vidéo
Cours magistraux

le (1h29m10s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 1)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h26m42s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 2)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h21m8s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 3)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo
Cours magistraux

le (1h26m53s)

Thomas Richard - Lower bounds on Ricci curvature, with a glimpse on limit spaces (Part 4)

The goal of these lectures is to introduce some fundamental tools in the study of manifolds with a lower bound on Ricci curvature. We will first state and prove the laplacian comparison theorem for manifolds with a lower bound on the Ricci curvature, and derive some important consequences : Bishop-Gromov inequality, Myers theorem, Cheeger-Gromoll splitting theorem. Then we will define the Gromov-Hausdorff distance between metric spaces which will allow us to consider limits of sequences of Riemannian manifolds, along the way we will prove ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte