Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 9732
Conférences

le (1h1m11s)

Xavier Cabré : Nonlinear elliptic and Fisher-KPP equations with fractional diffusion

Premier atelier de l'ERC « Reaction-Diffusion Equations, Propagations and Modelling »  Journées d'étude organisées par Henri Berestycki et Jean-Michel Roquejoffre  EHESS, 24-25 septembre 2013Xavier Cabré 2 (ICREA and UPC, Barcelona) Nonlinear elliptic and Fisher-KPP equations with fractional diffusion I will first describe the basic ideas concerning fractional Laplacians, as well as the essential tools to treat nonlinear equations involving   these operators. I will then present recent results on fractional   semilinear elliptic equations (mainly of Allen-Cahn type) and on front propagation for fractional Fisher-KPP type equations.
Voir la vidéo
Cours magistraux

le (1h1m6s)

Bubeck 2/9 - Some geometric aspects of randomized online decision making

This course is concerned with some of the canonical non-stochastic models of online decision making. These models have their origin in works from the 1950's and 1960's, and went through a resurgence in the mid-2000's due to many applications in the internet economy. This course focuses on a set of challenging conjectures around these models from the 1980's and 1990's. We present a unified approach based on a combination of convex optimization techniques together with powerful probabilistic tools, which will allow us to derive state of the art results in online learning, bandit optimization, as well as some classical online ...
Voir la vidéo
Conférences

le (1h1m4s)

C. Gasbarri - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne I (Part 4)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques. Algébrisation des variétés analytiques projectives: les théorèmes de Siegel et de Chow. Autour du théorème de Lefschetz faible. Une introduction à la géométrie formelle. Le théorème d’algébrisation de Grothendieck.
Voir la vidéo
Cours magistraux

le (1h1m4s)

B. Deroin - Monodromy of algebraic families of curves (Part 1)

The mini-course will focus on the properties of the monodromies of algebraic families of curves defined over the complex numbers. One of the goal will be to prove the irreducibility of those representations for locally varying families (Shiga). If time permit we will see how to apply this to prove the geometric Shafarevich and Mordell conjecture. The material that will be developed along the lectures are - analytic structure of Teichmüller spaces - theory of Kleinian groups - Bers embedding - b-groups - Mumford compactness criterion - Imayoshi-Shiga finiteness theorem.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte