Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 9985
Label UNT Clip pédagogique

le (4m24s)

L’enfant consommateur

Ce clip a pour objectif d’expliquer pourquoi l’enfant en tant que consommateur intéresse les entreprises. Il vise également à montrer que tout en apprenant progressivement à consommer, l’enfant contribue aussi à l’évolution de notre culture de consommation en y participant activement.  Cette présentation vise enfin à nourrir le débat sur le statut de l’enfant comme consommateur vulnérable ou averti.  
Voir la vidéo
Conférences

le (55m16s)

Robert Young - Quantitative rectifiability and differentiation in the Heisenberg group

(joint work with Assaf Naor) The Heisenberg group $\mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $\mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of differentiation that they used to show that it does not embed nicely into $L_1$. This notion is based on surfaces in $\mathbb{H}$, and in this talk, we will describe new techniques that let us quantify the "roughness" of such surfaces, find sharp bounds on the distortion of embeddings of $\mathbb{H}$, and estimate the accuracy of an approximate algorithm for the Sparsest Cut Problem.
Voir la vidéo
Conférences

le (50m2s)

Robert Haslhofer - The moduli space of 2-convex embedded spheres

We investigate the topology of the space of smoothly embedded n-spheres in R^{n+1}, i.e. the quotient space M_n:=Emb(S^n,R^{n+1})/Diff(S^n). By Hatcher’s proof of the Smale conjecture, M_2 is contractible. This is a highly nontrivial theorem generalizing in particular the Schoenflies theorem and Cerf’s theorem.In this talk, I will explain how geometric analysis can be used to study the topology of M_n respectively some of its variants.I will start by sketching a proof of Smale’s theorem that M_1 is contractible. By a beautiful theorem of Grayson, the curve shortening flow deforms any closed embedded curve in the plane to a round circle, ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte