Mon compte

Résultats de recherche

Nombre de programmes trouvés : 3100

le (55m20s)

b-L'entendement scientifique

Après avoir défini les types de connaissances qui existent en philosophie, Olivier Clain expose les spécificités de l'entendement scientifique, à travers les grands philosophes (Descartes, Hégel, Platon et Aristote). La notion d'entendement est définie par la distinction entre "entendement naturel" et "entendement scientifique". Enfin, l'enseignant expose quelques remarques sur les critères de scientificité, en distinguant quatre grands critères / quatre grands moments universels de l'esprit scientifique.GénériquePrésentation : Bureau de l'enseignement à distance Université Laval Collaboration : Département de Sociologie Université Laval Responsable du cours : Olivier Clain Département de Sociologie Université Laval Assistant de recherche : Monique Fourrier Martin Meunier ...
Voir la vidéo
Label UNT Conférences

le (55m20s)

Recent research at Pixar

In this talk I will survey a number of current and recent projects underway in the Research Group at Pixar. To set context for the discussion I'll begin with a brief overview of our production pipeline. I'll also discuss how we approach research at Pixar, including how we pick problems, what we look for when we consider the adoption of external research, and how we transfer technology to the rest of the studio.
Voir la vidéo

le (55m16s)

Robert Young - Quantitative rectifiability and differentiation in the Heisenberg group

(joint work with Assaf Naor) The Heisenberg group $\mathbb{H}$ is a sub-Riemannian manifold that is unusually difficult to embed in $\mathbb{R}^n$. Cheeger and Kleiner introduced a new notion of differentiation that they used to show that it does not embed nicely into $L_1$. This notion is based on surfaces in $\mathbb{H}$, and in this talk, we will describe new techniques that let us quantify the "roughness" of such surfaces, find sharp bounds on the distortion of embeddings of $\mathbb{H}$, and estimate the accuracy of an approximate algorithm for the Sparsest Cut Problem.
Voir la vidéo
Cours magistraux

le (55m15s)

A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part1)

Let X be an algebraic curve of genus g⩾2 embedded in its Jacobian variety J. The Manin-Mumford conjecture (proved by Raynaud) asserts that X contains only finitely many points of finite order. When X is defined over a number field, Bogomolov conjectured a refinement of this statement, namely that except for those finitely many points of finite order, the Néron-Tate heights of the algebraic points of X admit a strictly positive lower bound. This conjecture has been proved by Ullmo, and an extension to all subvarieties ...
Voir la vidéo

Facebook Twitter
Mon Compte