Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 3066
Séminaires

le (1h21m39s)

J.-L. Verger -Gaugry : Conjectures limites de la théorie des nombres, Conjecture de Lehmer, Conjecture de Schinzel-Zassenhaus, et fonction zêta dynamique du beta-shift

Système dynamique de Rényi-Parry, lacunarité, lenticularitéConditions de Parry, dynamique des nombres de Perron, en base nombre algébrique de numération,Géométrie et identification des zéros de la fonction supérieure de Parry, Fractal de Solomyak,questions de rationalité, dichotomie de Carlson-Polya
Voir la vidéo
Séminaires

le (1h11m21s)

J.-L. Verger-Gaugry : Conjectures limites de la théorie des nombres, Conjecture de Lehmer, Conjecture de Schinzel-Zassenhaus, et fonction zêta dynamique du beta-shift

Fonction zêta dynamique du beta-shiftBeta-transformation, opérateur de Perron-Frobenius, opérateur de transfer, déterminant de Fredholmgénéralisés, déterminants de kneading de Milnor et Thurston, fonction supérieure de Parry, théorieergodique d'après Ito et Takahashi
Voir la vidéo
Séminaires

le (1h26m5s)

J.-L. Verger-Gaugry : Conjectures limites de la théorie des nombres, Conjecture de Lehmer, Conjecture de Schinzel-Zassenhaus, et fonction zêta dynamique du beta-shift

Développements asymptotiques des mesures de MahlerEquidistribution limite des conjugués (Bilu, Favre Rivera-Letelier), théorie d'Erdös-Turan,développements asymptotiques et polylogarithmes : Poincaré, Condon. Inégalités de type Dobrowolskiet minorations, exemples. Méthodes de résolution.
Voir la vidéo
Cours magistraux

le (1h50m34s)

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 1)

In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.  
Voir la vidéo
Cours magistraux

le (1h23m9s)

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 2)

In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Voir la vidéo
Cours magistraux

le (1h23m42s)

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 3)

In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Voir la vidéo
Cours magistraux

le (1h26m22s)

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 4)

In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Voir la vidéo
Cours magistraux

le (1h27m50s)

Giovanni Alberti - Introduction to minimal surfaces and finite perimeter sets (Part 5)

In these lectures I will first recall the basic notions and results that are needed to study minimal surfaces in the smooth setting (above all the area formula and the first variation of the area), give a short review of the main (classical) techniques for existence results, and then outline the theory of Finite Perimeter Sets, including the main results of the theory (compactness, structure of distributional derivative, rectifiability). If time allows, I will conclude with a few applications.
Voir la vidéo
Cours magistraux

le (1h24m59s)

Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 3)

A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena.
Voir la vidéo
Cours magistraux

le (1h22m41s)

Camillo De Lellis - Center manifolds and regularity of area-minimizing currents (Part 4)

A celebrated theorem of Almgren shows that every integer rectifiable current which minimizes (locally) the area is a smooth submanifold except for a singular set of codimension at most 2. Almgren’s theorem is sharp in codimension higher than 1, because holomorphic subvarieties of Cn are area-minimizing. In fact the typical singularity of a 2-dimensional area-minimizing current is modelled by branch points of holomorphic curves. These singularities are rather difficult to analyze because they might be very high order phenomena.
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte