Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 2748
Cours magistraux

le (1h1m4s)

B. Deroin - Monodromy of algebraic families of curves (Part 1)

The mini-course will focus on the properties of the monodromies of algebraic families of curves defined over the complex numbers. One of the goal will be to prove the irreducibility of those representations for locally varying families (Shiga). If time permit we will see how to apply this to prove the geometric Shafarevich and Mordell conjecture. The material that will be developed along the lectures are - analytic structure of Teichmüller spaces - theory of Kleinian groups - Bers embedding - b-groups - Mumford compactness criterion - Imayoshi-Shiga finiteness theorem.
Voir la vidéo
Conférences

le (1h1m11s)

Xavier Cabré : Nonlinear elliptic and Fisher-KPP equations with fractional diffusion

Premier atelier de l'ERC « Reaction-Diffusion Equations, Propagations and Modelling »  Journées d'étude organisées par Henri Berestycki et Jean-Michel Roquejoffre  EHESS, 24-25 septembre 2013Xavier Cabré 2 (ICREA and UPC, Barcelona) Nonlinear elliptic and Fisher-KPP equations with fractional diffusion I will first describe the basic ideas concerning fractional Laplacians, as well as the essential tools to treat nonlinear equations involving   these operators. I will then present recent results on fractional   semilinear elliptic equations (mainly of Allen-Cahn type) and on front propagation for fractional Fisher-KPP type equations.
Voir la vidéo
Conférences

le (1h1m14s)

A. von Pippich - An analytic class number type formula for PSL2(Z)

For any Fuchsian subgroup Γ⊂PSL2(R) of the first kind, Selberg introduced the Selberg zeta function in analogy to the Riemann zeta function using the lengths of simple closed geodesics on Γ∖H instead of prime numbers. In this talk, we report on a formula that determines the special value at s=1 of the derivative of the Selberg zeta function for Γ=PSL2(Z). This formula is obtained as an application of a generalized Riemann-Roch isometry for the trivial sheaf on ¯¯¯¯¯¯¯¯¯¯¯Γ∖H, equipped with the Poincaré metric. This is joint ...
Voir la vidéo
Conférences

le (1h1m14s)

Les maths expérimentales...ça existe !

Conférence expérimentale du 11 février 2013 par François Guénard - Université d’Orsay Des expériences dont les objets sont des nombres, des matrices ou des suites numériques. Un microscope numérique, pour plonger dans l’infiniment petit ou dans l’infiniment grand... On ne peut toutefois pas tout faire avec les maths expérimentales, et en tout cas pas peigner une sphère chevelue !Plus di'nformations sur http://www.espgg.org/Conference-experimentale-lundi-11NB : le diaporama est téléchargeable sur cette page et est lisible en installant le programme gratuit Wolfram CDF player (Windows, 165 Mo) disponible à l'adresse suivante : http://www.wolfram.com/cdf-player/ 
Voir la vidéo
Conférences

le (1h1m21s)

Semantics in the Time of Computing

Much of the technical terminology of computer science betrays its logical heritage: ‘language’, ‘symbol’, ‘syntax’, ‘semantics’, ‘value’, ‘reference’, ‘identifier’, ‘data’, etc.  Classically, such terms were used to name essential phenomena underlying logic, human thought and language — phenomena, it was widely believed, that would never succumb to scientific (causal, mechanical) explanation.  Computer science, however, now uses all these terms in perfectly good scientific ways, to name respectable scientific (causally explicable, mathematically modellable) phenomena. There are two possibilities.  The first is that ...
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte