Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 1018
Label UNT Vidéocours

le (4m0s)

4.3. Measuring sequence similarity

So we understand why gene orprotein sequences may be similar. It's because they evolve togetherwith the species and they evolve in time, there aremodifications in the sequence and that the sequence may still besimilar, similar enough again to retrieve information on onesequence to transfer it to another sequence of interest. So thequestion now is how can we measure this similarity between twosequences for the moment. The first approach to similarityis a very simple one is to apply a distance which is calledhere the Editing System or the Hamming Distance.The idea is very basic. You would take two sequences likethese two sequences here and you look at the differences and youcount ...
Voir la vidéo
Label UNT Vidéocours

le (4m3s)

5.3. Remplir un tableau de distances

Pour tenter de construire l'arbre phylogénétique d'un ensemble d'espèces, nous allons utiliser les données et génotypique ou des données génotypiques disponibles sur ces espèces. Plus clairement, nous allons utiliser des séquences d'un gène homologue de ces espèces. La première étape va consister à calculer une matrice ou tableau de ces distances. Matrice au tableau? Un point de vocabulaire qui mérite que l'on s'arrête quelques secondes pour l'expliciter. La notion de matrice, c'est une notion mathématique. La matrice est un objet mathématique ayant certaines propriétés; propriétés que l'on étudie et travaille dans le domaine de l'algèbre linéaire. La notion de tableaux ...
Voir la vidéo
Label UNT Vidéocours

le (4m10s)

4.4. L’alignement de séquences devient un problème d’optimisation

La distance de Hamming nous donne une première possibilité de mesurer la similarité entre 2 séquences. Mais elle ne reflète pas suffisamment la réalité biologique. Qu'est-ce que j'entends par là ? On a parlé de mutations et nous avons vu qu'il y avait 3 types de mutation : les substitutions et les insertions délétions. Insertion dans une séquence, délétion dans l'autre et vice versa. Il faut tenir compte de cette catégorie de mutation, c'est pourquoi il nous faut changer notre manière effectivement d'évaluer la différence et à l'inverse la similarité entre 2 séquences. Prenons cet exemple de 2 séquences ici ...
Voir la vidéo
Label UNT Vidéocours

le (4m12s)

4.6. A path is optimal if all its sub-paths are optimal

A sequence alignment between two sequences is a path in a grid. So that, an optimal sequence alignmentis an optimal path in the same grid. We'll see now that a property of this optimal path provides us with scanned lines for designing an optimization algorithm. The property is the following. A path which is optimal is made up of optimal sub-paths. To prove that, we can start byproving that if a path of length L is optimal then the path of length L minus one is also optimal. This can be proved quiteeasily ad arburdum. That is, you take the hypothesis that the path of length L is optimal ...
Voir la vidéo
Label UNT Vidéocours

le (4m21s)

3.2. Un algorithme simple de prédiction de gènes

Sur la base des principes énoncés précédemment, nous allons écrire un premier algorithme de prédiction de gènes sur un texte génomique procaryote. Je rappelle ces principes. L'idée est la suivante : de rechercher des triplets STOP consécutifs dans la même phase, consécutifs de telle façon qu'effectivement il n'y ait pas un stop qui vienne se mettre au milieu et qui casserait, en quelque sorte, la région codante qui doit être traduite dans son intégralité. Donc, recherche de deux triplets STOP consécutifs, suffisamment éloignés l'un de l'autre pour qu'il y ait de la place pour coder une protéine fonctionnelle. Ensuite, on recherche le ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte