Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 24352
Cours magistraux

le (1h32m37s)

R. Dujardin - Some problems of arithmetic origin in complex dynamics and geometry (part3)

Some themes inspired from number theory have been playing an important role in holomorphic and algebraic dynamics (iteration of rational mappings) in the past ten years. In these lectures I would like to present a few recent results in this direction. This should include: the dynamical Manin-Mumford problem, in particular in the case of product rational maps (P(x),Q(y)) (after Ghioca, Nguyen, and Ye) the “unlikely intersection” problem (after Baker and DeMarco, and also Favre and ...
Voir la vidéo
Entretiens

le (7m29s)

Entretien #118 avec Atul Dodiya

Projet de recherche: "Méditation les yeux ouverts" Lors de sa résidence, Atul Dodiya se propose de créer une série de peintures et de dessins de petits formats sur papier. Il se livrera ainsi à une expérience ludique prenant le contre-pied de son travail actuel en atelier, par lequel il fait une exploration extrême, voire « cacophonique », d’une multitude d’images sur de grands rideaux métalliques. Très attiré par l’image des saints dans la peinture européenne et par la représentation de Krishna dans le Bhagavad Purana, cet artiste aura, pendant sa période de résidence, tout le loisir de ...
Voir la vidéo
Cours magistraux

le (1h31m1s)

R. Dujardin - Some problems of arithmetic origin in complex dynamics and geometry (part2)

Some themes inspired from number theory have been playing an important role in holomorphic and algebraic dynamics (iteration of rational mappings) in the past ten years. In these lectures I would like to present a few recent results in this direction. This should include: the dynamical Manin-Mumford problem, in particular in the case of product rational maps (P(x),Q(y)) (after Ghioca, Nguyen, and Ye) the “unlikely intersection” problem (after Baker and DeMarco, and also Favre and ...
Voir la vidéo
Cours magistraux

le (1h10s)

D. Loughran - Sieving rational points on algebraic varieties

Sieves are an important tool in analytic number theory. In a typical sieve problem, one is given a list of p-adic conditions for all primes p, and the challenge is to count the number of integers which satisfy all these p-adic conditions. In this talk we present some versions of sieves for varieties whose rational points are equidistributed, and give applications to counting rational points in thin sets. This is joint work with Tim Browning.
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte