Résultats de recherche
Nombre de programmes trouvés : 24352
Témoignages
le
(3m41s)
APP (Apprentissage par problème) en biochimie
Voir la vidéo
Témoignages
le
(4m11s)
Une expérience de "classe inversée" dans le domaine de la cancérologie
Voir la vidéo
Cours magistraux
le
(1h31m53s)
A. Chambert-Loir - Equidistribution theorems in Arakelov geometry and Bogomolov conjecture (part3)
... conjecture following Ullmo-Zhang. If time permits, I will also describe the proof of David and Philippon. I then plan to introduce the non-archimedean analogue of the equidistribution result and its application by Gubler to the Bogomolov conjecture over...
Voir la vidéo
Cours magistraux
le
(1h32m37s)
R. Dujardin - Some problems of arithmetic origin in complex dynamics and geometry (part3)
Some themes inspired from number theory have been playing an important role in holomorphic and algebraic dynamics (iteration of rational mappings) in the past ten years. In these lectures I would like to present a few recent results in this direction. This should include: the dynamical Manin-Mumford problem, in particular in the case of product rational maps (P(x),Q(y)) (after Ghioca, Nguyen, and Ye) the “unlikely intersection” problem (after Baker and DeMarco, and also Favre and ...
Voir la vidéo
Cours magistraux
le
(55m57s)
E. Peyre - Slopes and distribution of points (part3)
...The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite morphisms. The problem is to find a way to...
Voir la vidéo
Cours magistraux
le
(1h2m27s)
Z. Huang - Diophantine approximation and local distribution of rational points
We show how to use the recent work of D. McKinnon and M. Roth on generalizations of Diophantine approximation to algebraic varieties to formulate a local version of the Batyrev-Manin principle on the distribution of rational points. We present several toric varieties for which the result is known.
Voir la vidéo
Entretiens
le
(7m29s)
Entretien #118 avec Atul Dodiya
Projet de recherche: "Méditation les yeux ouverts" Lors de sa résidence, Atul Dodiya se propose de créer une série de peintures et de dessins de petits formats sur papier. Il se livrera ainsi à une expérience ludique prenant le contre-pied de son travail actuel en atelier, par lequel il fait une exploration extrême, voire « cacophonique », d’une multitude d’images sur de grands rideaux métalliques. Très attiré par l’image des saints dans la peinture européenne et par la représentation de Krishna dans le Bhagavad Purana, cet artiste aura, pendant sa période de résidence, tout le loisir de ...
Voir la vidéo
Cours magistraux
le
(1h31m1s)
R. Dujardin - Some problems of arithmetic origin in complex dynamics and geometry (part2)
Some themes inspired from number theory have been playing an important role in holomorphic and algebraic dynamics (iteration of rational mappings) in the past ten years. In these lectures I would like to present a few recent results in this direction. This should include: the dynamical Manin-Mumford problem, in particular in the case of product rational maps (P(x),Q(y)) (after Ghioca, Nguyen, and Ye) the “unlikely intersection” problem (after Baker and DeMarco, and also Favre and ...
Voir la vidéo
Cours magistraux
le
(1h2m42s)
E. Peyre - Slopes and distribution of points (part2)
...The distribution of rational points of bounded height on algebraic varieties is far from uniform. Indeed the points tend to accumulate on thin subsets which are images of non-trivial finite morphisms. The problem is to find a way to...
Voir la vidéo
Cours magistraux
le
(1h10s)
D. Loughran - Sieving rational points on algebraic varieties
Sieves are an important tool in analytic number theory. In a typical sieve problem, one is given a list of p-adic conditions for all primes p, and the challenge is to count the number of integers which satisfy all these p-adic conditions. In this talk we present some versions of sieves for varieties whose rational points are equidistributed, and give applications to counting rational points in thin sets. This is joint work with Tim Browning.
Voir la vidéo