Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 6192
Label UNT Vidéocours

le (4m46s)

3.5. Making the predictions more reliable

We have got a bacterial gene predictor but the way this predictor works is rather crude and if we want to have more reliable results, we have to inject into this algorithmmore biological knowledge. We will use a notion of RBS, RBS stands for Ribosome Binding Sites. What is it? OK. Let's have a look atthe cell machinery or part of it here. You certainly see here that wedeal with a eukaryotes cell. Why? It's because you have anucleus and you remember that the difference between prokaryoticcell and eukaryotic cell lies n the existence of a nucleus. Within the nucleus you have the DNA. The DNA is transcribed into ...
Voir la vidéo
Label UNT Vidéocours

le (4m46s)

5.2. The tree, an abstract object

When we speak of trees, of species,of phylogenetic trees, of course, it's a metaphoric view of a real tree. Our trees are abstract objects. Here is a tree and the different components of this tree. Here is what we call an edge or a branch. We have nodes, a particular nodeis the root and other nodes are the leaves here terminal nodesand we see that when we draw a tree as an abstract object, we put the root upside and the leaves downside so it's the reverse of a classical natural tree. We need an expression to describe a tree and we will use this kind of expression, how ...
Voir la vidéo
Label UNT Vidéocours

le (4m47s)

1.4. Parity Checking

 There are two standard ways to describe a subspace, explicitly by giving a basis, or implicitly, by the solution space of the set of homogeneous linear equations. Therefore, there are two ways of describing a linear code, explicitly, as we have seen in the previous sequence, by a generator matrix, or implicitly, by the null space of a matrix. This is what we will see in this sequence. This leads to the following definition: H is a parity check matrix of a linear code, if the code is the null space ...
Voir la vidéo
Label UNT Vidéocours

le (4m47s)

4.1. Introduction

Welcome to the fourth week of the MOOC Code-based Cryptography. Recall that we have mainly two ways of cryptanalyzing in the McEliece cryptosystem. We have Message Attacks, which address the problem of decoding a random linear code; these attacks has already been studied in the third week, by Nicolas Sendrier. Notice that efficient generic attack just makes the use of larger code in the McEliece scheme necessary. And we also have Key Attacks. These attacks try to retrieve the code structure, rather than attempting to use an specific decoding algorithm. These attacks ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte