Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 8194
Conférences

le (1h32m31s)

C. Gasbarri - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne I (Part 2)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques. Algébrisation des variétés analytiques projectives: les théorèmes de Siegel et de Chow. Autour du théorème de Lefschetz faible. Une introduction à la géométrie formelle. Le théorème d’algébrisation de Grothendieck.
Voir la vidéo
Conférences

le (1h1m14s)

C. Gasbarri - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne I (Part 3)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques. Algébrisation des variétés analytiques projectives: les théorèmes de Siegel et de Chow. Autour du théorème de Lefschetz faible. Une introduction à la géométrie formelle. Le théorème d’algébrisation de Grothendieck.
Voir la vidéo
Conférences

le (1h1m4s)

C. Gasbarri - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne I (Part 4)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques. Algébrisation des variétés analytiques projectives: les théorèmes de Siegel et de Chow. Autour du théorème de Lefschetz faible. Une introduction à la géométrie formelle. Le théorème d’algébrisation de Grothendieck.
Voir la vidéo
Conférences

le (1h5m39s)

J.-B. Bost - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne II (Part 1)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques.  Algébrisation de sous-schémas formels de variétés projectives. Théorèmes de Lefschetz et géométrie formelle: les théorèmes de Grauert et de Grothendieck. Algébrisation en géométrie diophantienne. ...
Voir la vidéo
Conférences

le (1h23m20s)

J.-B. Bost - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne II (Part 2)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques.      1. Algébrisation de sous-schémas formels de variétés projectives.     2. Théorèmes de Lefschetz et géométrie formelle: les théorèmes de Grauert et de Grothendieck.     3. Algébrisation en géométrie diophantienne.     4. Applications aux feuilletages.
Voir la vidéo
Conférences

le (1h31m27s)

J.-B. Bost - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne II (Part 3)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques.     1. Algébrisation de sous-schémas formels de variétés projectives.     2. Théorèmes de Lefschetz et géométrie formelle: les théorèmes de Grauert et de Grothendieck.     3. Algébrisation en géométrie diophantienne.     4. Applications aux feuilletages.
Voir la vidéo
Documentaires

le (34m44s)

TRAVAIL DE RÉALISATION D'UNE RAMPE À VIDE PAR PASCAL MAZABRAUD, SOUFFLEUR DE VERRE AU CHALUMEAU À L'ICOA

Ce film a été réalisé par une équipe de chercheurs en sociologie de l'Université de Tours (CETU ETIcS) dans le cadre de la recherche VIVACE.Enquête : Assegond CélineRéalisation : Assegond Céline et Palezis AlexandreMontage : Palezis AlexandreLa recherche VIVACE a bénéficié du financement de la Région Centre-Val de Loire. Avec le soutien de la Verrerie d’Art d’Amboise-Chargé Patrick Lepage, des municipalités de Chartres, Orléans et Vierzon, de la communauté de communes des Quatre Vallées, de Centre-Sciences, CCSTI, de la région Centre-Val de Loire, de CICLIC, l'agence de la Région Centre-Val de Loire pour le livre, l'image et la culture numérique, ...
Voir la vidéo
Conférences

le (1h7m43s)

J.-B. Bost - Techniques d’algébrisation en géométrie analytique, formelle, et diophantienne II (Part 4)

Dans ce cours, nous nous proposons d’expliquer comment des théorèmes d’algébrisation classiques, concernant des variétés ou des faisceux cohérents analytiques, possèdent des avatars en géométrie formelle et en géométrie diophantienne. Nous mettrons l’accent sur les points communs entre les preuves de ces différents théorèmes, et sur leurs conséquences "concrètes" concernant la géometrie et l’arithmétique des variétés algébriques.     1. Algébrisation de sous-schémas formels de variétés projectives.     2. Théorèmes de Lefschetz et géométrie formelle: les théorèmes de Grauert et de Grothendieck.     3. Algébrisation en géométrie diophantienne.     4. Applications aux feuilletages.
Voir la vidéo

 
FMSH
 
Facebook Twitter Google+
Mon Compte