Canal-U

Mon compte

Résultats de recherche

Nombre de programmes trouvés : 17397
Cours magistraux

le (1h14m50s)

Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 2)

Le but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur les liens avec la numération et les substitutions. Nous allons considérer principalement deux types de généralisations, à savoir, les algorithmes définis par homographies, comme l’algorithme de Jacobi-Perron, et les fractions continues associées aux algorithmes de réduction dans les réseaux.
Voir la vidéo
Cours magistraux

le (1h19m6s)

Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 2)

Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur mystère. On peut tous les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la construction de Salem et le théorème de Boyd, on définira la mesure de Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera que la mesure de Mahler ...
Voir la vidéo
Cours magistraux

le (1h8m41s)

Karma Dajani - An introduction to Ergodic Theory of Numbers (Part 2)

In this course we give an introduction to the ergodic theory behind common number expansions, like expansions to integer and non-integer bases, Luroth series and continued fraction expansion. Starting with basic ideas in ergodic theory such as ergodicity, the ergodic theorem and natural extensions, we apply these to the familiar expansions mentioned above in order to understand the structure and global behaviour of different number theoretic expansions, and to obtain new and old results in an elegant and straightforward manner.
Voir la vidéo
Conférences

le (1h17m9s)

« Comment Penser et écrire la religion » autour de l'ouvrage Ce que la religion fait aux gens, de Anne Gotman

Pendant trois jours, le bâtiment France a fêté les publications en sciences sociales : - lectures de textes par des comédiennes, - débats d’idées, - ateliers professionnels, et - ventes d’ouvrages des Éditions de la Maison des sciences de l’homme, des Éditions de l’EHESS et du Comptoir des Presses d’Universités dans l’atrium. Pour en savoir plus, consultez : - Site de la FMSH - Site des Editions de l'EHESS - Site du ...
Voir la vidéo
Cours magistraux

le (1h14m49s)

Valérie Berthé - Fractions continues multidimensionnelles et dynamique (Part 1)

Le but de cet exposé est de présenter des généralisations multidimensionnelles des fractions continues et de l’algorithme d’Euclide d’un point de vue systèmes dynamiques, en nous concentrant sur les liens avec la numération et les substitutions. Nous allons considérer principalement deux types de généralisations, à savoir, les algorithmes définis par homographies, comme l’algorithme de Jacobi-Perron, et les fractions continues associées aux algorithmes de réduction dans les réseaux.
Voir la vidéo
Cours magistraux

le (1h3m44s)

Mike Boyle - Nonnegative matrices : Perron Frobenius theory and related algebra (Part 1)

Lecture I. I’ll give a complete elementary presentation of the essential features of the Perron Frobenius theory of nonnegative matrices for the central case of primitive matrices (the "Perron" part). (The "Frobenius" part, for irreducible matrices, and finally the case for general nonnegative matrices, will be described, with proofs left to accompanying notes.) For integer matrices we’ll relate "Perron numbers" to this and Mahler measures. Lecture II. I’ll describe how the Perron-Frobenius theory generalizes (and fails to generalize) to 1,2,... x 1,2,... ...
Voir la vidéo
Cours magistraux

le (1h15m12s)

Marie-José Bertin - Des nombres de Salem à la mesure de Mahler de surfaces K3 (Part 1)

Le récent article de McMullen « Dynamics with small entropy on projective K3 surfaces » éclaire d’un jour nouveau les nombres de Salem. Ces entiers algébriques gardent cependant tout leur mystère. On peut tous les obtenir grâce à la construction de Salem (Boyd (1977)) et cependant on ignore s’il en existe un inférieur à 1,1762... Après avoir rappelé la construction de Salem et le théorème de Boyd, on définira la mesure de Mahler logarithmique d’un polynôme de plusieurs variables. On prouvera que la mesure de Mahler ...
Voir la vidéo

 
FMSH
 
Facebook Twitter
Mon Compte