Aller au contenu principal
République Française Liberté Égalité Fraternité
Accueil
Explorer Comprendre Partager
Mon compte
Mon compte
Vous devez être connecté
Constitution du mot de passe :
  • 8 caractères min.
Mot de passe oublié ?
Pas encore inscrit ?
  • Abonnez-vous à vos chaînes, disciplines et intervenants préférés
  • Créez, gérez et partagez vos playlists
  • Sauvegardez vos vidéos, podcasts, collections et dossiers favoris
S'inscrire
Créer une chaîne
Thématiques
  • Economie et Gestion
  • Environnement et développement durable
  • Lettres, arts, langues et civilisations
  • Sciences de la santé et du sport
  • Sciences fondamentales et appliquées
  • Sciences humaines, sociales, de l’éducation et de l’information
  • Sciences juridiques et politiques
ChainesIntervenants

Fil d'Ariane

  1. Accueil
Format
  • Vidéos (16)
Documentation associée
  • Standard (16)
  • (16)
    Standard
Niveau de difficulté
  • Confirmé
Qualité vidéo/son
  • Moyen (16)
  • (16)
    Moyen
Disciplines
  • Sciences fondamentales et appliquées (16)
Intervenants
  • Bamler, Richard H. (19..-....) (4)
  • Sormani, Christina (19..-....) (4)
  • Burkhardt-Guim, Paula (19..-....) (1)
  • Lai, Yi (1969-....) (1)
  • LeBrun, Claude (1956-....) (1)
  • Lesourd, Martin (19..-....) (1)
  • Li, Chao (1962-.... ; géographe) (1)
  • Perales Aguilar, Raquel (19..-....) (1)
  • Wang, Jian (mathématicien) (1)
  • Yau, Shing-Tung (1949-....) (1)
Afficher plus
Cursus
  • Bac + 8 (Doctorat, habilitation à diriger des recherches) (16)
Type de production
  • Cours/Séminaire (9)
  • Conférence (7)
Langues
  • anglais (16)
Chaine
  • Institut Fourier (16)
16
J. Wang - Topological rigidity and positive scalar curvature
Conférence
00:28:18
Favoris
J. Wang - Topological rigidity and positive scalar curvature
Wang
Jian

In this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with

  • Mathématiques
  • Grenoble
  • Scalar curvature
  • Eem2021
  • Contraintes de courbures et espaces métriques
01.07.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
Conférence
01:15:11
Favoris
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
Lesourd
Martin

The study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in

  • Mathématiques
  • Grenoble
  • Scalar curvature
  • Eem2021
  • Contraintes de courbures et espaces métriques
01.07.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Conférence
01:00:08
Favoris
P. Burkhardt - Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow
Burkhardt-Guim
Paula

We propose a class of local definitions of weak lower scalar curvature bounds that is well defined for C0 metrics. We show the following: that our definitions are stable under greater-than-second

  • Mathématiques
  • Grenoble
  • Scalar curvature
  • Eem2021
  • Contraintes de courbures et espaces métriques
01.07.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
S-T. Yau - Existence of complete Kähler-Einstein metric with negative scalar curvature
Conférence
00:58:26
Favoris
S-T. Yau - Existence of complete Kähler-Einstein metric with negative scalar curvature
Yau
Shing-Tung

This is a talk about my works with Damin Wu concerning those manifolds with negative holomorphic sectional curvature. I shall describe our theorem that such manifold must have negative first Chern

  • Mathématiques
  • Complex analytic and differential geometry 2017
  • Grenoble
  • Curvature
  • Kähler-Einstein
08.06.2017
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Claude Lebrun - Mass, Scalar Curvature, Kähler Geometry, and All That
Cours/Séminaire
01:04:47
Favoris
Claude Lebrun - Mass, Scalar Curvature, Kähler Geometry, and All That
LeBrun
Claude

Given a complete Riemannian manifold that looks enough like Euclidean space at infinity, physicists have defined a quantity called the “mass” that measures the asymptotic deviation of the geometry

  • Mathématiques
  • Grenoble
  • Colloquium mathalp 2019
  • Mathalp colloquium 2019
  • Mass
02.05.2019
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
Conférence
01:03:34
Favoris
C. Li - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions
Li
Chao

In this talk, I will discuss some recent developments on the topology of closed manifolds admitting Riemannian metrics of positive scalar curvature. In particular, we will prove if a closed PSC

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
30.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
Conférence
01:02:33
Favoris
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
Lai
Yi

We find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
30.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 1
Cours/Séminaire
01:21:32
Favoris
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 1
Sormani
Christina

We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
21.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 2
Cours/Séminaire
01:32:52
Favoris
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 2
Sormani
Christina

We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
22.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 3
Cours/Séminaire
01:43:31
Favoris
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 3
Sormani
Christina

We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
24.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 4
Cours/Séminaire
01:36:18
Favoris
C. Sormani - Intrinsic Flat and Gromov-Hausdorff Convergence 4
Sormani
Christina

We introduce various notions of convergence of Riemannian manifolds and metric spaces.  We then survey results and open questions concerning the limits of sequences of Riemannian manifolds with

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
25.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3
R. Perales - Recent Intrinsic Flat Convergence Theorems
Conférence
00:54:15
Favoris
R. Perales - Recent Intrinsic Flat Convergence Theorems
Perales Aguilar
Raquel

Given a closed and oriented manifold M and Riemannian tensors g0, g1, ... on M that satisfy g0 < gj, vol(M, gj)→vol (M, g0) and diam(M, gj)≤D we will see that (M, gj) converges to (M, g0) in the

  • Mathématiques
  • Grenoble
  • Eem2021
  • Contraintes de courbures et espaces métriques
  • Curvature constraints and spaces of metrics
29.06.2021
  • document 1 document 2 document 3
  • niveau 1 niveau 2 niveau 3
  • audio 1 audio 2 audio 3

Pagination

  • Page courante 1
  • Page 2
  • Page suivante ››
  • Dernière page Last »
Fondation Maison des Sciences de l'Homme
  • Qui sommes-nous
  • Aide
  • Contact
  • Créer une chaine
  • CGU
  • Newsletter
  • Flux RSS
  • Facebook
  • Twitter
  • Créer un compte