
TASK-BASED PARALLEL PROGRAMMING FOR SCALABLE
ALGORITHMS AND ILLUSTRATION WITH MATRIX MULTIPLICATION
JCAD 2024

Antoine Jégo

Supervised by Alfredo Buttari, Emmanuel Agullo & Abdou Guermouche

5 novembre 2024



BACKGROUND



COMPUTER ARCHITECTURE AND PROGRAMMING MODELS

Gflop/s

Tflop/s

Pflop/s

Eflop/s

Ju
n
.8

4

N
o
v.

8
5

N
o
v.

8
6

N
o
v.

8
7

N
o
v.

8
8

N
o
v.

8
9

N
o
v.

9
0

N
o
v.

9
1

N
o
v.

9
2

N
o
v.

9
3

N
o
v.

9
4

N
o
v.

9
5

N
o
v.

9
6

N
o
v.

9
7

N
o
v.

9
8

N
o
v.

9
9

N
o
v.

0

N
o
v.

1

N
o
v.

2

N
o
v.

3

N
o
v.

4

N
o
v.

5

N
o
v.

6

N
o
v.

7

N
o
v.

8

N
o
v.

9

N
o
v.

1
0

N
o
v.

1
1

N
o
v.

1
2

N
o
v.

1
3

N
o
v.

1
4

N
o
v.

1
5

N
o
v.

1
6

N
o
v.

1
7

N
o
v.

1
8

N
o
v.

1
9

N
o
v.

2
0

N
o
v.

2
1

N
o
v.

2
2

N
o
v.

2
3

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Ju
n
.

Year

C
o

m
p

u
ti

n
g

 p
o

w
e
r 

in
s
ta

ll
e
d

# of processors

1

1k

250k

1M

10M

Supercomputers evolution

Distributed + Multicore + Accelerated

Modern supercomputers → Large scale, heterogeneity

2



RUNTIME SYSTEMS

Classical approach

Application

CUDA OpenMP MPI

GPU CPU NIC

Complex supercomputers
⊕

Advanced scalability techniques
⇓

Complex software

Runtime system approach

Runtime

Application

CUDA OpenMP MPI

GPU CPU NIC

General-purpose runtimes
• High-level interface
• Data management
• Heterogeneity management

3



RUNTIME SYSTEMS

Classical approach

Application

CUDA OpenMP MPI

GPU CPU NIC

Complex supercomputers
⊕

Advanced scalability techniques
⇓

Complex software

Runtime system approach

Runtime

Application

CUDA OpenMP MPI

GPU CPU NIC

General-purpose runtimes
• High-level interface
• Data management
• Heterogeneity management

3



TASK-BASED PARADIGM

Application taskify Directed
Acylic Graph

3 Approach validated on heterogeneous single-node machine
◦ SOLHAR among multiple scientific projects

• Multiple ways to program the high-level description of the DAG
◦ Parametrized Task Graph (PTG): PaRSEC
◦ Sequential Task Flow (STF): PaRSEC, StarPU
◦ . . . 4

https://anr.fr/Projet-ANR-13-MONU-0007


SEQUENTIAL TASK FLOW MODEL

C = A · B

A

B

C DAG of GEMM

Algorithm 1: Sequential blocked
GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 Cij += Ail · Blj

Algorithm 2: Shared-memory STF GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task(gemm, Ail:R, Blj:R, Cij:RW )
5 task_wait()

OpenMP, StarPU, PaRSEC, . . .

5



SEQUENTIAL TASK FLOW MODEL

C = A · B

A

B

C DAG of GEMM

Algorithm 1: Sequential blocked
GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 Cij += Ail · Blj

Algorithm 2: Shared-memory STF GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task(gemm, Ail:R, Blj:R, Cij:RW )
5 task_wait()

OpenMP, StarPU, PaRSEC, . . .

5



SEQUENTIAL TASK FLOW MODEL

Pros of runtime systems:
• Increased portability
• Improved separation of concerns

Pros of the STF model:
• Productive
• Clear translation from sequential

In practice, scientific computing software use hand-tuned, application-tailored
advanced communication patterns, data layouts, workload mappings, . . .

Is STF expressive enough to transparently schedule these
techniques and reach existing and new scalable algorithms ?

6



ScaLAPACK GEMM
O(1k) lines of code
legacy package

→?

Algorithm 3: STF GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task(gemm, ?)

Three portable nested loops

Contributions

• Extension of the STF programming model
◦ Data replication features (reduction, replication)
◦ Validated over dense linera algebra operations (GEMM, SYMM, POTRF)

7



STF SCALABLE MATRIX-MATRIX MULTIPLICATION



MATRIX-MATRIX MULTIPLICATION – C-STATIONARY

Scalable Universal Matrix Multiplication Algorithms (SUMMA)

A-, B- and C-stationary depending on matrices’ dimensions.

SUMMA – 2D C-stationary1

• 2D block-cyclic distribution

0 1 2
3 4 5

q

p

• owner of C computes

• Communications
◦ row-wise broadcast of A
◦ column-wise broadcast of B

1R. v. d. Geijn and Watts, 1997
9



MATRIX-MATRIX MULTIPLICATION – 3D ALGORITHMS

+

SUMMA – 3D C-stationary2

• 2D block-cyclic (first layer)

• owner of C’s aisle (across layers) compute

• Communications
◦ row-wise scatter+broadcast of A
◦ column-wise scatter+broadcast of B
◦ aisle-wise reduce of C

2Schatz, R. A. v. d. Geijn, and Poulson, 2016
10



MATRIX-MATRIX MULTIPLICATION – 3D ALGORITHMS

+

SUMMA – 3D C-stationary2

• 2D block-cyclic (first layer)

• owner of C’s aisle (across layers) compute

• Communications
◦ row-wise scatter+broadcast of A
◦ column-wise scatter+broadcast of B
◦ aisle-wise reduce of C

2Schatz, R. A. v. d. Geijn, and Poulson, 2016
10



MATRIX-MATRIX MULTIPLICATION – 3D ALGORITHMS

+

SUMMA – 3D C-stationary2

• 2D block-cyclic (first layer)

• owner of C’s aisle (across layers) compute

• Communications
◦ row-wise scatter+broadcast of A
◦ column-wise scatter+broadcast of B
◦ aisle-wise reduce of C

2Schatz, R. A. v. d. Geijn, and Poulson, 2016
10



MATRIX-MATRIX MULTIPLICATION – 3D ALGORITHMS

+

SUMMA – 3D C-stationary2

• 2D block-cyclic (first layer)

• owner of C’s aisle (across layers) compute

• Communications
◦ row-wise scatter+broadcast of A
◦ column-wise scatter+broadcast of B
◦ aisle-wise reduce of C

2Schatz, R. A. v. d. Geijn, and Poulson, 2016
10



BASELINE APPROACH
Algorithm 4: Baseline 2D GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task (gemm, Ail:R, Blj:R,

Cij:RW)

Baseline modela

1. Data mapping

2. Task mapping inferred from data mapping

3. Point-to-point comms. inferred from task mapping

aAgullo, Aumage, Faverge, Furmento, Pruvost, Sergent, and Thibault, 2017.

11



BASELINE APPROACH
Algorithm 4: Baseline 2D GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task (gemm, Ail:R, Blj:R,

Cij:RW)

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3Baseline modela

1. Data mapping

2. Task mapping inferred from data mapping

3. Point-to-point comms. inferred from task mapping

aAgullo, Aumage, Faverge, Furmento, Pruvost, Sergent, and Thibault, 2017.

11



BASELINE APPROACH
Algorithm 4: Baseline 2D GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task (gemm, Ail:R, Blj:R,

Cij:RW)

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3Baseline modela

1. Data mapping

2. Task mapping inferred from data mapping

3. Point-to-point comms. inferred from task mapping

aAgullo, Aumage, Faverge, Furmento, Pruvost, Sergent, and Thibault, 2017.

11



BASELINE APPROACH
Algorithm 4: Baseline 2D GEMM.

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task (gemm, Ail:R, Blj:R,

Cij:RW)

P0 P1

P2 P3

P0 P1

P2 P3

P0 P1

P2 P3Baseline modela

1. Data mapping

2. Task mapping inferred from data mapping

3. Point-to-point comms. inferred from task mapping

aAgullo, Aumage, Faverge, Furmento, Pruvost, Sergent, and Thibault, 2017.

11



BASELINE APPROACH – LIMITS

Baseline STF model cannot productively provide an expression of SUMMA
algorithms

7 Task mapping is bound to data mapping

7 Point-to-point communications patterns are inefficient

7 Reduction patterns would burden the expression

12



KEY FEATURES – TASK MAPPING

Algorithm 5: 3D GEMM (I/III).

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 insert_task (gemm, Ail:R, Blj:R,

Cij:RW )

Advanced model 
1. Data mapping

2. Implicit task mapping

3. Point-to-point comms. inferred from task mapping

13



KEY FEATURES – TASK MAPPING

Algorithm 5: 3D GEMM (I/III).

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 rank = map(i,j,l,stat,s)
5 insert_task (gemm, Ail:R, Blj:R,

Cij:RW, rank:ON_RANK)

Advanced model 
1. Data mapping

2. Explicit task mapping

3. Point-to-point comms. inferred from task mapping

13



KEY FEATURES – COLLECTIVE TRANSFERS

Algorithm 6: 3D GEMM (II/III).

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 rank = map(i,j,l,stat,s)
5 insert_task (gemm, Ail:R, Blj:R,

Cij:RW, rank:ON_RANK)

P0

P1

P2

P3

Advanced model 
1. Data mapping

2. Explicit task mapping

3. Point-to-point comms. inferred from task mapping

14



KEY FEATURES – COLLECTIVE TRANSFERS

Algorithm 6: 3D GEMM (II/III).

1 for i = 1 . . .m do
2 for j = 1 . . .n do
3 for l = 1 . . . k do
4 rank = map(i,j,l,stat,s)
5 insert_task (gemm, Ail:R, Blj:R,

Cij:RW, rank:ON_RANK)

P0

P1

P2

P3

Advanced model 
1. Data mapping

2. Explicit task mapping

3. Collective communications dynamically detecteda

aDenis, Jeannot, Swartvagher, and Thibault, 2020.

14



KEY FEATURES – REDUCTION OPERATIONS

Algorithm 7: 3D GEMM (III/III).

1 submit_initilization_tasks()
2 for i = 1 . . .m do
3 for j = 1 . . .n do
4 for l = 1 . . . k do
5 rank = map(i,j,l,stat,s)
6 insert_task (gemm, Ail:R, Blj:R,

C(rank)
ij :RW, rank:ON_RANK)

7 submit_reduction_tasks()

1st layer

2nd layer

Advanced model 
1. Data mapping

2. Explicit task mapping

3. Collective communications dynamically detected

4. Explicit reduction pattern
15



KEY FEATURES – REDUCTION OPERATIONS

Algorithm 7: 3D GEMM (III/III).

1 bind_methods(C,redux,init)
2 for i = 1 . . .m do
3 for j = 1 . . .n do
4 for l = 1 . . . k do
5 rank = map(i,j,l,stat,s)
6 insert_task (gemm, Ail:R, Blj:R,

Cij:RANK_REDUX,
rank:ON_RANK)

1st layer

2nd layer

Advanced model 
1. Data mapping

2. Explicit task mapping

3. Collective communications dynamically detected

4. Implicit reduction pattern
15



STFF 3D GEMM EXPRESSION
Algorithm 8: 3D GEMM.

1 bind_methods(C,redux,init)
2 for i = 1 . . .m do
3 for j = 1 . . .n do
4 for l = 1 . . . k do
5 rank = map(i,j,l,stat,s)
6 insert_task (gemm, Ail:R, Blj:R,

Cij:RANK_REDUX,
rank:ON_RANK)

Conclusion I

Suitably extended STF model can
portably express scalable GEMM
algorithms.

Is this approach scalable in practice ?

Advanced model = STFF

1. Data mapping

2. Explicit task mapping

3. Collective communications dynamically detected

4. Implicit reduction pattern
16



STFF 3D GEMM EXPRESSION
Algorithm 8: 3D GEMM.

1 bind_methods(C,redux,init)
2 for i = 1 . . .m do
3 for j = 1 . . .n do
4 for l = 1 . . . k do
5 rank = map(i,j,l,stat,s)
6 insert_task (gemm, Ail:R, Blj:R,

Cij:RANK_REDUX,
rank:ON_RANK)

Conclusion I

Suitably extended STF model can
portably express scalable GEMM
algorithms.

Is this approach scalable in practice ?

Advanced model = STFF

1. Data mapping

2. Explicit task mapping

3. Collective communications dynamically detected

4. Implicit reduction pattern
16



IMPLEMENTATION DETAILS

Runtime system used is StarPU – extended with improved reduction features.

STFF GEMM has been implemented in qr_mumps.

software package programming model
2D 3D

C A B all
GPU

Chameleon 1.1 STF5, StarPU 1.3 3 7 7 7 3

SLATE MPI+OpenMP 3 3 7 7 3

DPlasma PTG, PaRSEC 3 3 3 7 3

ScaLAPACK SPMD, BLACS 3 3 3 7 7

Elemental SPMD 3 3 3 7 7

this work STFF, StarPU 1.4 3 3 3 3 3

17



EXPERIMENTS – PLATFORMS

Machines hosted inside the Très Grand Centre de Calcul (TGCC).

A. Irène-Rome AMD Rome 7H12 2.6 GHz
◦ 2,292 128-cores nodes with Infiniband HDR100 interconnect

◦ Rpeak = 11.75 PFlop/s

◦ 256GB DDR4 RAM per node

B. Irène-Skylake Intel Skylake 8168 2.7 GHz
◦ 1,656 48-cores nodes with Infiniband EDR interconnect

◦ Rpeak = 6.86 PFlop/s

◦ 192GB DDR4 RAM per node

Overall about 1 million CPU hours consumed.
18

https://en.wikichip.org/wiki/amd/epyc/7h12
https://en.wikichip.org/wiki/intel/xeon_platinum/8168


EXPERIMENTS – PERFORMANCE (C-STAT)

m = n = k =  32,768 m = n = k =  65,536 m = n = k = 131,072

R
o

m
e

 16  64 256 16  64 256 16  64 256

 20

500

 70

 40

 30

 50
 60

200

100

300

400

# of nodes

E
x
e
c
. 

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm

Chameleon Elemental qr_mumps

ScaLAPACK SLATE

Stationary variant

C

Block size

256 512 1024

Conclusion II

STFF offers competitive performance w.r.t reference libraries

19



EXPERIMENTS – PERFORMANCE (C-STAT)

m = n = k =  32,768 m = n = k =  65,536 m = n = k = 131,072

R
o

m
e

 16  64 256 16  64 256 16  64 256

 20

500

 70

 40

 30

 50
 60

200

100

300

400

# of nodes

E
x
e
c
. 

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm

Chameleon Elemental qr_mumps

ScaLAPACK SLATE

Stationary variant

C 3D-C

Block size

256 512 1024

Conclusion II

STFF offers competitive performance w.r.t reference libraries

19



EXPERIMENTS – PERFORMANCE (A-STAT)

m = 8*n = k =  65,536 m = 8*n = k = 131,072 m = 8*n = k = 262,144

R
o

m
e

 16  64 256 16  64 256 16  64 256

 10

500

 60

 30

 20

 40
 50

200

100

300
400

# of nodes

E
x
e
c
. 

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm

Elemental qr_mumps

ScaLAPACK SLATE

Stationary variant

C A

Block size

256 512 1024

Conclusion III

STFF brings versatility together with performance

20



EXPERIMENTS – PERFORMANCE (A-STAT)

m = 8*n = k =  65,536 m = 8*n = k = 131,072 m = 8*n = k = 262,144

R
o

m
e

 16  64 256 16  64 256 16  64 256

 10

500

 60

 30

 20

 40
 50

200

100

300
400

# of nodes

E
x
e
c
. 

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm

Elemental qr_mumps

ScaLAPACK SLATE

Stationary variant

C A

Block size

256 512 1024

Conclusion III

STFF brings versatility together with performance

20



EXPERIMENTS – MEMORY CONSUMPTION

Unlimited graph unrolling

time

#
of

ta
sk
s

High
Memory
Consumption

User-controlled graph unrolling

time

#
of

ta
sk
s

Low
Memory
Consumption max

min

Memory consumption control through limits on tasks’ flow.
21



EXPERIMENTS – MEMORY CONSUMPTION

Unlimited graph unrolling

time

#
of

ta
sk
s

High
Memory
Consumption

User-controlled graph unrolling

time

#
of

ta
sk
s

Low
Memory
Consumption max

min

Memory consumption control through limits on tasks’ flow.
21



EXPERIMENTS – MEMORY CONSUMPTION

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

m=n=k=65,536 (total size : 96 GB)

6
4
 S

ky
la

ke
 n

o
d
e
s

0.00 0.95 1.91 2.86 3.81 4.77 5.72 6.68 7.63 8.58

  0

 25

 50

 75

100

Max used mem. (one node, GB)

E
x
e
c
. 

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm Chameleon qr_mumps SLATE
Lookahead (# of outer products) 1 2 5 10 ∞

Conclusion IV

STFF incorporates tunable indirect method to control memory consumption

22



EXPERIMENTS – MEMORY CONSUMPTION

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

m=n=k=65,536 (total size : 96 GB)

6
4
 S

ky
la

ke
 n

o
d
e
s

0.00 0.95 1.91 2.86 3.81 4.77 5.72 6.68 7.63 8.58

  0

 25

 50

 75

100

Max used mem. (one node, GB)

E
x
e
c
. 

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm Chameleon qr_mumps SLATE
Lookahead (# of outer products) 1 2 5 10 ∞

Conclusion IV

STFF incorporates tunable indirect method to control memory consumption

22



CONCLUSIONS



CONTRIBUTIONS

STFF assessment over linear algebra operations

I Suitably extended STF model can portably express scalable GEMM algorithms

II STFF offers competitive performance w.r.t reference libraries

III STFF brings versatility together with performance

Additional contributions (not discussed here)

• Implementation of scalable SYMM, POTRF algorithms
• Implementation of a communication-avoiding 2D 5-points stencil prototype

24



IMPACT

Software contributions

• Implementation of additional features in StarPU
◦ Distributed-memory reduction patterns
◦ Data write replication (not discussed here, MR 66  and 68 )

• Implementation of dense scalable routines in qr_mumps

Transfer

• Chameleon 1.3
◦ Used by INRAE colleagues to analyse biodiversity datasets

25

https://gitlab.inria.fr/starpu/starpu/-/merge_requests/66
https://gitlab.inria.fr/starpu/starpu/-/merge_requests/68

	Background
	Computer architecture and programming models
	Runtime systems
	Sequential Task Flow Model

	STF scalable matrix-matrix multiplication
	Matrix-matrix multiplication
	Baseline approach
	Key features
	STFmath text inlined[fg]math text inlinedfgmath text inlined[fg]math text inlinedfg✦ 3D GEMM expression
	Experiments

	Conclusions
	Contributions
	Impact


