

RestoRes Research integrity in biomedical research

CENTRE DE RECHERCHE

DES CORDELIERS

irset

IMP INSERM 111085

SAINBIOSE

111059 • INSERM • SAINT-ETIENNE

SAnté INgéniérie BIOlogie Saint-Etienne

Florian Naudet floriannaudet@gmail.com

an

Conflict of Interest Disclosure

Funded by European Union

Fraternité

Région BRETAGNE

~ I MINISTÈRE **DE L'ENSEIGNEMENT** SUPÉRIEUR, **DE LA RECHERCHE ET DE L'INNOVATION** Liberté Égalité Fraternité

Research integrity in biomedical research RestoRes

Conflict of Interest Disclosure

Grant Agreement HORIZON-MSCA.2022-DN 101120360

RestoRes Research integrity in biomedical research

Research integrity in biomedical research

Credits: Artificial limbs for a thalidomide child, 1961-1965. Science Museum CC-BY-SA-2.0

Therapeutics

THALIDOMIDE—A NEW NONBARBITURATE SLEEP-INDUCING DRUG

LOUIS LASAGNA, M.D. Baltimore, Md. From the Departments of Medicine (Division of Clinical Pharmacology), Pharmacology, and Experimental Therapeutics, Johns Hopkins University School of Medicine (Received for publication Dec. 9, 1959)

	PLACEBO	THALIDOMIDE							
PATIENT GROUP	(POOLED)	100 мд.	200 мд.						
Those whose usual induction time was less than 30 minutes	26 (N = 17)	32 (N = 15)	11 (N = 10)						
Those whose usual induction time was 30 minutes or more	81 (N = 24)	100 (N = 10)	30 (N = 15)						
All patients	$58 \pm 10.3 (N = 41)$	$59 \pm 16.8 (N = 25)$	$23^* \pm 4.9 (N = 25)$						

TABLE J. MEAN SLEEP INDUCTION TIME (MINUTES)

*Significantly different from placebo and 100 mg. of thalidomide at 0.05 level.

RestoRes

Research integrity in biomedical research

The "Free lunches" index for assessing academics: a not entirely serious proposal

Alexandre Scanff¹ · Nicolas Mauhe² · Marion Taburet¹ · Pierre-Etienne Savourat³ · Thomas Clément³ · Benjamin Bastian^{3,4} · Ioana Cristea⁵ · Alain Braillon⁶ · Nicolas Carayol² · Florian Naudet^{1,7}

Fig. 2 Subgroup analyses per medical discipline: correlations, *fl-index* distribution (with the identified threshold and 95% IC) and *h*-index distribution

EBM analysis

Publication by association: how the COVID-19 pandemic has shown relationships between authors and editorial board members in the field of infectious diseases

Clara Locher ,¹ David Moher ,² Ioana Alina Cristea ,³ Florian Naudet ¹

A survey of biomedical journals to detect editorial bias and nepotistic behavior

Alexandre Scanff¹, Florian Naudet¹, Ioana A. Cristea², David Moher^{3,4}, Dorothy V. M. Bishop⁵, Clara Locher¹

 Univ Rennes, CHU Rennes, Inserm, CIC 1414 (Centre d'Investigation Clinique de Rennes), Rennes, France, 2 Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy, 3 Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, 4 School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada, 5 Department of Experimental Psychology, University of Oxford, United Kingdom

* clara.locher@univ-rennes1.fr

Fig 3. Publication lag. Distribution of the publication lag median for the subgroup of 2,725 (49.8%) journals reporting submission and publication dates. Publication lag median (in days) are presented for articles signed by the most prolific authors compared to the articles without any of the most prolific authors (with marginal density plot of distributions). The data underlying this figure may be found in https://osf.io/6e3uf/.

https://doi.org/10.1371/journal.pbio.3001133.g003

An international consensus on core reproducibility items in research: the OSIRIS Delphi study

Rita Banzi, Monika Varga, Yuri Andrei Gelsleichter, Constant Vinatier, David Moher, Florian Naudet and the OSIRIS-Delphi study group

Fig 1 | Idealised version of analytical flexibility across the research landscape. Analytical flexibility is greater for observational research because the research question does not shape the design of the experiment (methods flexibility). Unlike clinical trials, which require prespecified measures, researchers analysing routinely collected data have to choose among many imperfectly measured variables that may have to be curated, combined, cleaned, and derived, with each step adding opportunities for analytical choices (measurement flexibility). Use of existing data also allows the analysis of relations between many variables, making it easy to test multiple hypotheses (flexibility in research hypotheses). The black line delimits the studies for which the International Committee of Medical Journal Editors requires registration

Improving the transparency and reliability of observational studies through registration Florian Naudet, ^{1,2} Chirag J Patel, ³ Nicholas J DeVito, ⁴ Gérard Le Goff, ⁵

Florian Naudet, ^{1,2} Chirag J Patel, ³ Nicholas J DeVito, ⁴ Gérard Le Goff, ⁵ Ioana A Cristea, ⁶ Alain Braillon, ⁷ Sabine Hoffmann^{8,9}

What is the vibration of effects?

BMJ ERM

Constant Vinatier ⁽¹⁾, ¹ Sabine Hoffmann, ^{2,3} Chirag Patel, ⁴ Nicholas J DeVito ⁽²⁾, ⁵ Ioana Alina Cristea ⁽³⁾, ⁶ Braden Tierney, ⁷ John P A Ioannidis ⁽³⁾, ⁸ Florian Naudet ⁽³⁾, ^{1,9}

Figure 1 Vibration of effects of beta coefficient in the exploration of the association between lisinopril usage and systolic blood pressure. An estimate <0 suggests lower systolic blood pressure with lisinopril. This figure was produced using data from Tierney *et al*¹⁰ by fitting 9595 random select models, among all possible models, exploring the association and using 253 covariates, with a maximum number of variables in the model set to 20. Data and code to reproduce the figure are available on the Open Science Framework at https://osf.io/xfy75/. (A) Dots represent the 6242 convergent regression models among the 9595 randomly selected models. Colours represent densities (red=high, blue=low), with marginal density plot of distributions. (B) Point estimates and 95% CIs for all models. Colours represent densities (red=high, blue=low).

Vibration of effects resulting from treatment selection in mixed-treatment comparisons: a multiverse analysis on network meta-analyses of antidepressants in major depressive disorder

Constant Vinatier ⁽¹⁾, ¹ Clement Palpacuer ⁽²⁾, ² Alexandre Scanff, ¹ Florian Naudet ⁽²⁾, ^{1,3}

Figure 3: Vibration of effects for treatment response for the comparisons of clomipramine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odd ratio >1 favors clomipramine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines show the 1st and 99th percentiles.

BJD

SYSTEMATIC REVIEW

Overlapping network meta-analyses on psoriasis systemic treatments: an overview, quantity does not make quality R. Guelimi 🕵 S. Afach, J.-P. Régnaux, T

R. Guelimi 🔀, S. Afach, J.-P. Régnaux, T. Bettuzzi, G. Chaby, E. Sbidian, F. Naudet, L. Le Cleach

NMA	Date of publication	ACI	CIC	FUM	MTX	ITO	EFA	ALE	BRIA	TYK2	APR	TOFA	BRO	CERT	ADA	ETA	UST	GUS	INF	IXE	RIS	SEC	TIL	BIM	GOL	MIRI
MROWIETZ 2021	2021												Х	X	Х	X	X	Х	X	Х	Х	X	X			
TORRES 2020	2021				X				X				Х	Х	Х	Х	X	Х	Х	X	Х	Х	Х		X	
BLAUVELT 2021	2020													X	Х		X	Х	X	Х	Х	Х				
SONG 2020	2020											Х				Х										
DIAZ ACEDO 2020	2020												Х				Х			Х		Х				
XUE 2020	2020												Х		Х	Х	Х	Х	Х	X		X				
MAHIL 2020	2020				X								Х	Х	Х	Х	Х	Х	Х	Х	X	X	X			
XU 2020	2020								X				Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х		X
TADA 2020	2020												Х		Х		Х	Х	Х	Х	Х	X				
DU JARDIN 2020	2020																	Х					X			
JIANZHEN	2020																Х	Х			X		X			
ARMSTRONG 2020	2020	Х	Х	X	Х						X		Х	X	Х	Х	Х	Х	Х	Х	Х	Х	X			
SBIDIAN 2020	2020	X	X	X	X					Х	X	X	Х	X	Х	Х	X	Х	Х	X	Х	Х	X	X		
WARREN 2020a	2019												Х	X	Х	X	X	Х	X	Х	Х	X	X			
WARREN 2020b	2019												Х		Х	Х	Х	Х	Х	Х		X	X			
BAI 2019	2019												Х				X	Х		X	Х	X	X			
XU 20195	2019														Х		X	X			X		X			
SAWYER 2019a	2019	X		Х	X						X		Х	Х	Х	Х	X	X	Х	Х	X	X	X			
SAWYER 2018	2019	X			X						X		Х		Х	X	Х		Х	X		X				
XU 2019a	2018					X	Х	X	X				Х		Х	X	X	Х	Х	X		X	X			
ARMSTRONG 2018	2018										X				Х	Х	X		Х	X		Х				
LV 2018	2018																Х									
GENG 2018	2018		Х		X				Х						Х	Х	X		Х							
CAMERON 2018	2018										X		Х		Х	Х	X	Х	Х	X		X	X			
LOOS 2018	2018										X		Х		Х	Х	X		Х	Х		X				
WARREN 2018	2017															Х	X			Х		X				
IMAFUKU 2018	2017														Х		X		Х			Х				
AL SAWAH 2017	2017														Х	Х	X			Х		X				
GOMEZ GARCIA 2017	2017														X	Х	X		Х			X				
JABBAR LOPEZ 2017	2017				X										X	Х	X		Х	X		X				
SBIDIAN 2017	2017	X	X	X	X	X		X			X	X	Х	Х	Х	X	Х	Х	Х	X		X	X			
FAN 2015	2015																X		Х							
SIGNOROVITCH 2015	2015														Х	Х	Х		Х							
GUPTA 2014	2014				X			X							Х	Х	X		Х							
SCHMITT 2014	2014		X	X	X			X							X	Х	Х		Х							
IGARASHI 2013	2013						Х								X	X	Х		Х							
GALVAN BANQUERI 2013	2013														X	Х	Х		Х							
LIN 2012	2012							X							X	X	Х		Х							
REICH 2012	2012						Х								Х	X	X		Х							
BANSBACK 2009	2009		X		X	X		X							Х	Х			Х							
REICH 2008	2008						X	X								X			Х							
WOOLACOTT 2006	2006		X	X	X		Х									Х			Х							

<u>Treatments cited as best in the abstract in relation</u> to the included treatments for each NMA.

Each "X" represents the included treatments, squares filled in green represent the treatments cited as best, red squares represent the treatment of the funding pharmaceutical company

A comparative randomized clinical trial evaluating the efficacy and safety of tacrolimus versus hydrocortisone as a topical treatment of atopic dermatitis in children

Amal A. Mohamed¹, Radwa El Borolossy², Eman M. Salah³, Maha S. Hussein⁴, Nashwa M. Muharram⁵, Naglaa Elsalawy⁶, Mona G. Khalil⁷, Maha O. Mahmoud⁸, Reham Y. El-Amir⁹, Heba M. A. Elsanhory¹⁰, Nourelhuda Ahmed¹¹, Ahmed S. Adaroas¹¹, Mahmoud Montaser¹² and Amal A. El Kholy (p) ¹³*

Hydrocortisone Tacrolimus

FIGURE 2

Median total score of mEASI in Tacrolimus and Hydrocortisone group at baseline and at the end of the study.

A comparative randomized clinical trial evaluating the efficacy and safety of tacrolimus versus hydrocortisone as a topical treatment of atopic dermatitis in children

Amal A. Mohamed¹, Radwa El Borolossy², Eman M. Salah³, Maha S. Hussein⁴, Nashwa M. Muharram⁵, Naglaa Elsalawy⁶, Mona G. Khalil⁷, Maha O. Mahmoud⁸, Reham Y. El-Amir⁹, Heba M. A. Elsanhory¹⁰, Nourelhuda Ahmed¹¹, Ahmed S. Adaroas¹¹, Mahmoud Montaser¹² and Amal A. El Kholy (p) ¹³*

PLOS MEDICINE

	Outcome	High-dose vitamin D3 supplementation	Standard-dose vitamin D3 supplementation	Relative risk (95% CI) <i>P</i> value	Risk difference	Unadjusted hazard ratio (95% CI) <i>P</i> value	Adjusted hazard ratio (95% CI) <i>P</i> value
		No./t	otal no. (%)		(%)		
]	Intent-to-treat pop	ulation		
	Primary outcome: 14-day overall mortality	8/127 (6)	14/127 (11)	0.57 (0.25 to 1.32) 0.19	4.7	0.56 (0.24 to 1.35) 0.20	0.39 (0.16 to 0.99 0.049
ш	Secondary outcome: 28-day overall mortality	19/126 (15)	21/126 (17)	0.91 (0.51 to 1.60) 0.73	1.6	0.89 (0.48 to 1.65) 0.70	0.70 (0.36 to 1.36) 0.29
7				Per-protocol popu	lation		
	Primary outcome: 14-day overall mortality	7/122 (6)	14/122 (11)	0.50 (0.21 to 1.20) 0.12	5.7	0.49 (0.20 to 1.21) 0.12	0.35 (0.13 to 0.90) 0.03
¥ I	Secondary outcome: 28-day overall mortality	17/121 (14)	21/121 (17)	0.81 (0.45 to 1.46) 0.48	3.3	0.78 (0.41 to 1.49) 0.45	0.62 (0.31 to 1.22) 0.17
	dose vitamin D3 group requirement, hospitaliz ngoing cancers, profu	and 1 participant in the star ation, and use of antibiotics, se diarrhea, and delirium at	idard-dose vitamin D3 group. A anti-infective drugs, and/or cor baseline).	djusted analyses wei ticosteroids) and ba	e controlled f seline imbalar	for randomization strata (i.e nces in important prognosti	e., age, oxygen ic factors (i.e., sex,
OS	https://doi.org/10.1371/j	ournal.pmed.1003999.t002					
E	High-do	se versus s	tandard-dose	e vitamii	n D		

Table 2. Effect of allocation to high-dose or standard-dose vitamin D3 supplementation on the primary and secondary outcomes, in intention-to-treat and per-pro-

High-dose versus standard-dose vitamin D supplementation in older adults with COVID-19 (COVIT-TRIAL): A multicenter, open-label, randomized controlled superiority trial

Cédric Annweiler^{1*}, Mélinda Beaudenon¹, Jennifer Gautier¹, Justine Gonsard², Sophie Boucher⁶, Guillaume Chapelet⁴, Astrid Darsonval⁵, Bertrand Fougère⁶, Olivier Guérin⁷, Marjorie Houvet⁸, Pierre Ménager⁹, Claire Roubaud-Baudron ¹⁰, Achille Tchalla¹¹, Jean-Claude Souberbielle¹², Jérémie Riou[®]², Elsa Parot-Schinkel², Thomas Célarier¹³, on behalf of the COVIT-TRIAL study group¹

JOURNAL of MEDICINE

JOURNAL of MEDICINE

Psychological Medicine

The cumulative effect of reporting and citation biases on the apparent efficacy of treatments: the case of depression

Y. A. de Vries^{1,2}, A. M. Roest^{1,2}, P. de Jonge^{1,2}, P. Cuijpers³, M. R. Munafò^{4,5} and J. A. Bastiaansen^{1,6}

CONCLUSIONS

Neither paroxetine nor high dose imipramine showed efficacy for major depression in adolescents, and there was an increase in harms with both drugs. Access to primary data from trials has important implications for both clinical practice and research, including that published conclusions about efficacy and safety should not be read as authoritative. The reanalysis of Study 329 illustrates the necessity of making primary trial data and protocols available to increase the rigour of the evidence base.

Restoring Study 329: efficacy and harms of paroxetine and imipramine in treatment of major depression in adolescence

Joanna Le Noury,¹ John M Nardo,² David Healy,¹ Jon Jureidini,³ Melissa Raven,³ Catalin Tufanaru,⁴ Elia Abi-Jaoude⁵

Fig 4 | Timing of suicidal and self injurious events in Study 329, Keller and colleagues, and RIAT analysis

ESSAY

Sharing Individual Participant Data (IPD) within the Context of the Trial Reporting System (TRS)

Deborah A. Zarin*, Tony Tse*

IPD Sharing

- Provides audit trail
 for summary results reporting
- Enables re-analyses of trial data
- Enables combining of trial data with other data for novel investigations

Summary Results Reporting

- Provides "minimum results reporting set" for each trial based on registered protocol information
- Structured data enable accurate search and retrieval based on elements of study design

Prospective Registration

- Documents existence and enables tracking of ongoing and completed trials
- Allows verification of key protocol information and tracking of changes
- Provides survey of research landscape (e.g., by topic or across the clinical research enterprise

Fig 2. Schematic depicting the functions of the three key components of the TRS.

doi:10.1371/journal.pmed.1001946.g002

Data sharing and reanalysis of randomized controlled trials in leading biomedical journals with a full data sharing policy: survey of studies published in *The BMJ* and *PLOS Medicine*

Florian Naudet,¹ Charlotte Sakarovitch,² Perrine Janiaud,¹ Ioana Cristea,^{1,3} Daniele Fanelli,^{1,4} David Moher,^{1,5} John P A Ioannidis^{1,6}

Fig 2 | P values in initial analyses and in reanalyses. Axes are on a log scale. Blue indicates identical conclusion between initial analysis and reanalysis. Dots of same colors indicate analyses from same study

the**bm**

Original Investigation | Medical Journals and Publishing

Data Sharing and Reanalyses Among Randomized Clinical Trials Published in Surgical Journals Before and After Adoption of a Data Availability and Reproducibility Policy

Damien Bergeat, MD, PhD; Nicolas Lombard, MD; Anis Gasmi, MD; Bastien Le Floch, MD; Florian Naudet, MD, PhD

Key Points

Question What is the association of the implementaton of the International Committee of Medical Journal Editors (ICMJE) data sharing policy with data sharing practices and data availability in the 10 leading surgical journals publishing randomized clinical trials?

Findings This cross-sectional study of 65 RCTs published before and 65 RCTs published after the ICMJE data sharing policy found no association between the policy and data sharing in the journals studied.

Meaning This study suggests that most randomized clinical trials published in the 10 leading surgical journals lack transparency and that their results may not be reproducible by external researchers.

Ш И О И Ш

PLOS ONE

RESEARCH ARTICLE

Funders' data-sharing policies in therapeutic research: A survey of commercial and noncommercial funders

© COMMERCIAL FUNDERS

Forty-one

one 🜔

1%) had a data-sharing policy.

Among fu ^{Check for} a data-sharing policy, in a survey of 100 RCTs registered on clinicaltrials.gov: **. Data-sharing statements** were present for eighty-one **(81% [72% - 88%])** registered RCTs. **. Intention to share data** was expressed in **59% [49% – 69%]** of registered RCTs.

Florian Naudet¹

NON CON MERCIAL FUNDERS

Thirty (of 78; **38%**) had a data-sharing policy with eighteen (of 30, **60%**) **making data-sharing mandatory** and twelve (**40%**) **encouraging data-sharing**.

Among funders with a data-sharing policy, in a survey of 100 RCTs registered on clinicaltrials.gov: **. Data-sharing statements** were present for seventy-seven (**77%**, **95% IC [67%-84%]**) registered RCTs.

. Intention to share data was expressed in 12% [7%-20%] of registered RCTs.

REGISTERED REPORT

Open Access

Data-sharing and re-analysis for main studies assessed by the European Medicines Agency—a cross-sectional study on European Public Assessment Reports

Maximilian Siebert^{1,2}, Jeanne Gaba^{1,2}, Alain Renault^{1,2}, Bruno Laviolle^{1,2}, Clara Locher^{1,2}, David Moher³ and Florian Naudet^{1,2,4*}^o

BMC Medicine

Stakeholders	Proposed action
ICMJE	Should certify compliance, adopt more binding policies, and clarify when clinical trial data sharing is required and ethically possible.
Journals	 Should provide oversight with editorial screening (e.g., by a reproducible research editor) and software screening (e.g., by implementing an IT infrastructure to verify data sharing processes described in submitted data sharing plans). Should embargo future publications from authors if they have not shared their data from previous manuscripts in their journal despite a promise to do so.
Funders/ institutions	 Should monitor and reward data sharing. Should provide technical/regulatory guidance for clinical trial data sharing. Should implement DUACs. Should withhold support from investigators not sharing data. Should support meta-research efforts that evaluate the impact of clinical trial data sharing.
Researchers	Should commit to sharing data. Should engage in evaluating the impact of clinical trial data sharing and provide the necessary feedback to improve the policy.

Table 2. Proposed actions for various stakeholders to ensure that the ICMJE policy meets the mark.

DUAC, Data Use and Access Committee; ICMJE, International Committee of Medical Journal Editors.

https://doi.org/10.1371/journal.pmed.1003844.t002

POLICY FORUM

Medical journal requirements for clinical trial data sharing: Ripe for improvement

Florian Naudet^{1*}, Maximilian Siebert^{1*}, Claude Pellen^{1*}, Jeanne Gaba^{1*}, Cathrine Axfors^{2,3}, Ioana Cristea⁴, Valentin Danchev^{2,5}, Ulrich Mansmann^{6,7}, Christian Ohmann⁸, Joshua D. Wallach⁹, David Moher^{10,11}, John P. A. Ioannidis^{2,12}

Implementing clinical trial data sharing requires training a new generation of biomedical researchers

Ulrich Mansmann, Clara Locher, Fabian Prasser, Tracey Weissgerber, Ulrich Sax, Martin Posch, Evelyne Decullier, Ioana A. Cristea, Thomas P. A. Debray, Leonhard Held, David Moher, John P. A. Ioannidis, Joseph S. Ross, Christian Ohmann & Florian Naudet

 Principles
 Governance
 Skills
 Operations

 Fig. 1 | Elements of data sharing.
 Data sharing is built on principles, governance

 structures, skills and operation infrastructure. It shapes scientific openness,

 transparency and reproducibility as virtues of a scientific community that

 demonstrates good practice and supports change.

Data sharing enhances the value of medical research and builds trust in clinical trials, but more biomedical researchers need to be trained in these approaches, which include meta-research, data science and ethical, legal and social issues.

Rapid access to innovative medicinal products while ensuring relevant health technology assessment. Position of the French National Authority for Health

Antoine Vanier,^{1,2} Judith Fernandez ⁽¹⁾, ¹ Sophie Kelley,¹ Lise Alter,¹ Patrick Semenzato,¹ Corinne Alberti,^{3,4} Sylvie Chevret,⁵ Dominique Costagliola,⁶ Michel Cucherat,⁷ Bruno Falissard,⁸ François Gueyffier,⁹ Jérôme Lambert,⁵ Etienne Lengliné,¹⁰ Clara Locher ⁽¹⁾,¹¹ Florian Naudet ⁽¹⁾,^{12,13} Raphael Porcher,¹⁴ Rodolphe Thiébaut,¹⁵ Muriel Vray,¹⁶ Sarah Zohar,^{17,18} Pierre Cochat,¹⁹ Dominique Le Guludec¹⁹

In addition, HAS calls for greater

transparency in the whole process of generating evidence through initiatives such as registered report publications, data and clinical study reports sharing.²⁰

An open science pathway for drug marketing authorization—Registered drug approval

Florian Naudet^{1*}, Maximilian Siebert¹, Rémy Boussageon², Ioana A. Cristea^{3,4}, Erick H. Turner^{5,6}

Our original goals for protocol review of understanding the needs of researchers better, innovating faster ways to publish, and being sensitive to potential bias in decision making, remain important and continue to guide our evolution across *The Lancet* family of journals. These goals rightly find expression in new developments, such as 10+10 for rapid publication of trials⁴ and the REWARD campaign (REduce research WAste and Reward Diligence).⁵ As they do, it is important to re-evaluate existing projects, such as protocol review. Having done so, and noted greater appreciation for the importance of protocols, study registration, and the widespread availability of publication for protocols, our conclusion is that *The Lancet's* protocol review service has served its purpose. Therefore, we will cease to accept submissions for protocol review after Dec 31, 2015. All protocols received on or before that date will be considered and our commitments to the authors of protocols that we accept will be honoured. The editors continue to welcome the inclusion of a protocol for all research submissions and to require them for randomised trials. Furthermore, we encourage authors of accepted research papers of any design to post a copy of the full protocol on their institutional website so that *The Lancet* can publish a link to it.⁶ In this way, protocol review can be open to all readers.

Protocol review at The Lancet: 1997-2015

The Editors of The Lancet The Lancet, London EC2Y 5AS, UK

Published registered reports are rare, limited to one journal group, and inadequate for randomized controlled trials in the clinical field Norah Anthony^{a,*}, Antoine Tisseaux^a, Florian Naudet^{b,c}

Research integrity in biomedical research RestoRes

Agenda

Identify Problems

- Zombie trials
- Financial Conflicts of Interest (FCOIs)
- Editorial Conflicts of Interest (COIs)

Develop Solutions

• Data-sharing and management plans

Evaluate Solutions

Reproducibility checks

Train the Next Generation

• Educating researchers

Synthesize Findings

• Integration of primary evidence

Open Science

Ouvrir la science !

NSPECT SR

L'organisation pour une recherche Inserm éthique et responsable ____

RestoRes Research integrity in biomedical research

CENTRE DE RECHERCHE

DES CORDELIERS

irset

IMP INSERM 111085

SAINBIOSE

111059 • INSERM • SAINT-ETIENNE

SAnté INgéniérie BIOlogie Saint-Etienne

Florian Naudet floriannaudet@gmail.com

