# Canal-U

Mon compte

## J-B Bost - Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part1)

Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/institut_fourier/embed.1/j_b_bost_theta_series_infinite_rank_hermitian_vector_bundles_diophantine_algebraization_part1.41163?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
BOST Jean-Benoît

Producteur Canal-U :
Institut Fourier
Contacter le contributeur
J’aime
Imprimer
partager

### J-B Bost - Theta series, infinite rank Hermitian vector bundles, Diophantine algebraization (Part1)

In the classical analogy between number fields and function fields, an Euclidean lattice (E,∥.∥) may be seen as the counterpart of a vector bundle V on a smooth projective curve C over some field k. Then the arithmetic counterpart of the dimension h0(C,V)=dimkΓ(C,V) of the space of sections of V is the non-negative real number h0θ(E,∥.∥):=log∑v∈Ee−π∥v∥2.

In these lectures, I will firstly discuss diverse properties of the invariant h0θ and of its extensions to certain infinite dimensional generalizations of Euclidean lattices. Then I will present applications of this formalism to transcendence theory and to algebraization theorems in Diophantine geometry.

## commentaires

Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)