Canal-U

Mon compte
Institut Fourier

S. Kebekus - Varieties with vanishing first Chern class


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/institut_fourier/embed.1/s_kebekus_varieties_with_vanishing_first_chern_class.39667?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
KEBEKUS Stefan

Producteur Canal-U :
Institut Fourier
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

S. Kebekus - Varieties with vanishing first Chern class

We investigate the holonomy group of singular Kähler-Einstein metrics on klt varieties with numerically trivial canonical divisor. Finiteness of the number of connected components, a Bochner principle for holomorphic tensors, and a connection between irreductibility of holonomy representations and stability of the tangent sheaf are established. As a consequence, we show that up to finite quasi-étale covers, varieties with strongly stable tangent sheaf are either Calabi-Yau (CY) or irreducible holomorphic symplectic (IHS). Finally, finiteness properties of fundamental groups of CY and IHS varieties are established.

 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter Google+
Mon Compte