Canal-U

Mon compte
Institut Fourier

Z. Badreddine - Optimal transportation problem and MCP property on sub-Riemannian structures


Copier le code pour partager la vidéo :
<div style="position:relative;padding-bottom:56.25%;padding-top:10px;height:0;overflow:hidden;"><iframe src="https://www.canal-u.tv/video/institut_fourier/embed.1/z_badreddine_optimal_transportation_problem_and_mcp_property_on_sub_riemannian_structures.47785?width=100%&amp;height=100%" style="position:absolute;top:0;left:0;width:100%;height: 100%;" width="550" height="306" frameborder="0" allowfullscreen scrolling="no"></iframe></div> Si vous souhaitez partager une séquence, indiquez le début de celle-ci , et copiez le code : h m s
Auteur(s) :
BADREDDINE Zeinab

Producteur Canal-U :
Institut Fourier
Contacter le contributeur
J’aime
Imprimer
partager facebook twitter Google +

Z. Badreddine - Optimal transportation problem and MCP property on sub-Riemannian structures

This presentation is devoted to the study of mass transportation on sub-Riemannian geometry. In order to obtain existence and uniqueness of optimal transport maps, the first relevant method to consider is the one used by Figalli and Rifford which is based on the local semiconcavity of the sub-Riemannian distance outside the diagonal. Recently, Cavalletti and Huesmann developed a new method to solve the Monge problem using a measure contraction property. That is why we attempt to prove the MCP property on sub-Riemannian structures as a consequence of the upper bound of the horizontal Hessian of the sub-Riemannian distance.

 

commentaires


Ajouter un commentaire Lire les commentaires
*Les champs suivis d’un astérisque sont obligatoires.
Aucun commentaire sur cette vidéo pour le moment (les commentaires font l’objet d’une modération)
 

Dans la même collection

FMSH
 
Facebook Twitter Google+
Mon Compte