Notice
Tatiana Toro - Geometry of measures and applications (Part 4)
- document 1 document 2 document 3
- niveau 1 niveau 2 niveau 3
Descriptif
In the 1920's Besicovitch studied linearly measurable sets in the plane, that is sets with locally finite "length". The basic question he addressed was whether the infinitesimal properties of the "length" of a set E in the plane yield geometric information on E itself. This simple question marks the beginning of the study of the geometry of measures and the associated field known as Geometric Measure Theory (GMT).
In this series of lectures we will present some of the main results in the area concerning the regularity of the support of a measure in terms of the behavior of its density or in terms of its tangent structure. We will discuss applications to PDEs, free boundary regularity problem and harmonic analysis. The aim is that the GMT component of the mini-course will be self contained.
Intervention
Thème
Documentation
Liens
Dans la même collection
-
Matthias Röger - A curvature energy for bilayer membranes
RögerMatthiasA curvature energy for bilayer membranes
-
Giovanni Pisante - Duality approach to a variational problem involving a polyconvex integrand
PisanteGiovanniDuality approach to a variational problem involving a polyconvex integrand
-
Neshan Wickramasereka - Stability in minimal and CMC hypersurfaces
WickramasekaraNeshanindisponible
-
-
Gian Paolo Leonardi - Towards a unified theory of surface discretization
LeonardiGian Paoloindisponible
-
-
-
-
-
-
Free discontinuity problems and Robin boundary conditions
GiacominiAlessandropar Alessandro Giacomini, université de Brescia
-
Avec les mêmes intervenants et intervenantes
-
Tatiana Toro - Geometry of measures and applications (Part 3)
ToroTatianaIn the 1920's Besicovitch studied linearly measurable sets in the plane, that is sets with locally finite "length". The basic question he addressed was whether the infinitesimal properties of
-
Tatiana Toro - Geometry of measures and applications (Part 1)
ToroTatianaIn the 1920's Besicovitch studied linearly measurable sets in the plane, that is sets with locally finite "length". The basic question he addressed was whether the infinitesimal properties of
-
Tatiana Toro - Geometry of measures and applications (Part 5)
ToroTatianaIn the 1920's Besicovitch studied linearly measurable sets in the plane, that is sets with locally finite "length". The basic question he addressed was whether the infinitesimal properties of
-
Tatiana Toro - Geometry of measures and applications (Part 2)
ToroTatianaIn the 1920's Besicovitch studied linearly measurable sets in the plane, that is sets with locally finite "length". The basic question he addressed was whether the infinitesimal properties of
Sur le même thème
-
"Le mathématicien Petre (Pierre) Sergescu, historien des sciences, personnalité du XXe siècle"
HerléaAlexandreAlexandre HERLEA est membre de la section « Sciences, histoire des sciences et des techniques et archéologie industrielle » du CTHS. Professeur émérite des universités, membre effectif de l'Académie
-
Webinaire sur la rédaction des PGD
LouvetViolaineRédaction des Plans de Gestion de Données (PGD) sous l’angle des besoins de la communauté mathématique.
-
Alexandre Booms : « Usage de matériel pédagogique adapté en géométrie : une transposition à interro…
« Usage de matériel pédagogique adapté en géométrie : une transposition à interroger ». Alexandre Booms, doctorant (Université de Reims Champagne-Ardenne - Cérep UR 4692)
-
T. Ozuch - Noncollapsed degeneration and desingularization of Einstein 4-manifolds
OzuchTristanWe study the noncollapsed singularity formation of Einstein 4-manifolds. We prove that any smooth Einstein 4-manifold close to a singular one in a mere Gromov-Hausdorff (GH) sense is the result
-
D. Tewodrose - Limits of Riemannian manifolds satisfying a uniform Kato condition
TewodroseDavidPresentation of a joint work with G. Carron and I. Mondello where we study Kato limit spaces.
-
Y. Lai - A family of 3d steady gradient Ricci solitons that are flying wings
LaiYiWe find a family of 3d steady gradient Ricci solitons that are flying wings. This verifies a conjecture by Hamilton. For a 3d flying wing, we show that the scalar curvature does not vanish at
-
A. Mondino - Time-like Ricci curvature bounds via optimal transport
MondinoAndreaThe goal of the talk is to present a recent work in collaboration with Cavalletti (SISSA) on optimal transport in Lorentzian synthetic spaces. The aim is to set up a “Lorentzian analog” of the
-
M. Lesourd - Positive Scalar Curvature on Noncompact Manifolds and the Positive Mass Theorem
LesourdMartinThe study of positive scalar curvature on noncompact manifolds has seen significant progress in the last few years. A major role has been played by Gromov's results and conjectures, and in
-
R. Perales - Recent Intrinsic Flat Convergence Theorems
PeralesRaquelThéorèmes récents de convergence plane intrinsèque
-
J. Fine - Knots, minimal surfaces and J-holomorphic curves
FineJoëlI will describe work in progress, parts of which are joint with Marcelo Alves. Let L be a knot or link in the 3-sphere. I will explain how one can count minimal surfaces in hyperbolic 4-space
-
J. Wang - Topological rigidity and positive scalar curvature
WangJianIn this talk, we shall describe some topological rigidity and its relationship with positive scalar curvature. Precisely, we will present a proof that a complete contractible 3-manifold with
-
D. Semola - Boundary regularity and stability under lower Ricci bounds
SemolaDanieleThe theory of non smooth spaces with lower Ricci Curvature bounds has undergone huge developments in the last thirty years. On the one hand the impetus came from Gromov’s precompactness theorem